Abstract

The aim of this paper regards the laboratory validation of an energy management system (EMS) for an industrial site on the Eigerøy island (Norway). It will be the demonstration district in the ROBINSON project for a consequent concept replication. This activity in cyber-physical mode is an innovative approach to finalize the EMS tool with real measurement data with prime movers available at laboratory level, considering the necessary EMS robustness and flexibility for replication on other industrial islands. This EMS was designed and developed to minimize variable costs, producing on/off and set-point signals that, through a model predictive control (MPC) software, establish the system status. This smart grid includes renewable sources (e.g., solar panels, a wind turbine, and syngas) and traditional prime movers, such as a steam boiler for the industry needs. Moreover, an energy storage device is installed composed of an electrolyzer with a hydrogen pressure vessel. The main results reported in this work regard 26-h tests performed in cyber-physical mode thanks to the real-time interaction of hardware and software. So, a real microturbine and real photovoltaic (PV) panels were managed by the EMS in conjunction with software models for components not physically present in the laboratory. Although the optimization target was cost minimization, significant improvement was also obtained in terms of efficiency increase and CO2 emission decrease.

References

1.
Tan
,
B.
,
Chen
,
S.
,
Liang
,
Z.
,
Zheng
,
X.
,
Zhu
,
Y.
, and
Chen
,
H.
,
2024
, “
An Iteration-Free Hierarchical Method for the Energy Management of Multiple-Microgrid Systems With Renewable Energy Sources and Electric Vehicles
,”
Appl. Energy
,
356
, p.
122380
.10.1016/j.apenergy.2023.122380
2.
Bellotti
,
D.
,
Rivarolo
,
M.
, and
Magistri
,
L.
,
2022
, “
A Comparative Techno-Economic and Sensitivity Analysis of Power-to-X Processes From Different Energy Sources
,”
Energy Convers. Manage.
,
260
, p.
115565
.10.1016/j.enconman.2022.115565
3.
Barberis
,
S.
,
Rivarolo
,
M.
,
Bellotti
,
D.
, and
Magistri
,
L.
,
2022
, “
Heat Pump Integration in a Real Poly-Generative Energy District: A Techno-Economic Analysis
,”
Energy Convers. Manage.: X
,
15
, p.
100238
.10.1016/j.ecmx.2022.100238
4.
Vannoni
,
A.
,
Garcia
,
J. A.
,
Guedez
,
R.
,
Sorce
,
A.
, and
Massardo
,
A. F.
,
2023
, “
Combined Cycle, Heat Pump, and Thermal Storage Integration: Techno-Economic Sensitivity to Market and Climatic Conditions Based on a European and United States Assessment
,”
ASME J. Eng. Gas Turbines Power
,
145
(
2
), p.
021007
.10.1115/1.4056021
5.
Bozzo
,
M.
,
Caratozzolo
,
F.
, and
Traverso
,
A.
,
2012
, “
Smart Polygeneration Grid: Control and Optimization System
,”
ASME
Paper No. GT2012-68568.10.1115/GT2012-68568
6.
Ferrari
,
M. L.
,
Gini
,
L.
,
Di Barba
,
P.
,
Mognaschi
,
M. E.
, and
Sieni
,
E.
,
2024
, “
Multi-Objective Optimization of a Polygeneration Grid Including Thermal Energy Storage System
,”
J. Energy Storage
,
97
, p.
112963
.10.1016/j.est.2024.112963
7.
Javaid
,
N.
,
Javaid
,
S.
,
Abdul
,
W.
,
Ahmed
,
I.
,
Almogren
,
A.
,
Alamri
,
A.
, and
Niaz
,
I. A.
,
2017
, “
A Hybrid Genetic Wind Driven Heuristic Optimization Algorithm for Demand Side Management in Smart Grid
,”
Energies
,
10
(
3
), pp.
319
327
.10.3390/en10030319
8.
Ali
,
S.
,
Ullah
,
K.
,
Hafeez
,
G.
,
Khan
,
I.
,
Albogamy
,
F. R.
, and
Haider
,
S. I.
,
2022
, “
Solving Day-Ahead Scheduling Problem With Multi-Objective Energy Optimization for Demand Side Management in Smart Grid
,”
Eng. Sci. Technol., Int. J.
,
36
, p.
101135
.10.1016/j.jestch.2022.101135
9.
Ferrari
,
M. L.
,
Gini
,
L.
, and
Maccarini
,
S.
,
2023
, “
Energy Management System for Smart Grids Including Renewable Sources and Industrial Symbiosis
,”
ASME
Paper No. GT2023-102402.10.1115/GT2023-102402
10.
ETN Global
,
2024
, “
Robinson
,” ETN Global, Saint Gilles, Belgium, accessed Apr. 1, 2024, https://www.robinson-h2020.eu/
11.
Marcellan
,
A.
,
Abrassi
,
A.
, and
Tomberg
,
M.
,
2019
, “
Cyber-Physical System of a Solid Oxide Fuel Cell/Micro Gas Turbine Hybrid Power Plant
,”
E3S Web Conf.
,
113
, p.
02006
.10.1051/e3sconf/201911302006
12.
Ferrari
,
M. L.
,
Zaccaria
,
V.
, and
Kyprianidis
,
K.
,
2021
, “
Pressurized SOFC System Fuelled by Biogas: Control Approaches and Degradation Impact
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061006
.10.1115/1.4048653
13.
Tsai
,
A.
,
Banta
,
L.
,
Tucker
,
D.
, and
Gemmen
,
R.
,
2010
, “
Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
4
), p.
041008
.10.1115/1.4000628
14.
ETN Global
,
2024
, “
Preliminary Performance of Integrated System Operating With the Management Tool
,” ETN Global, Saint Gilles, Belgium, accessed Apr. 1, 2024, https://www.robinson-h2020.eu/wp-content/uploads/2023/09/D3.3-Preliminary-performance-of-integrated-system-operating-with-the-management-tool.pdf
15.
Jaatinen-Värri
,
A.
,
Nerg
,
J.
,
Uusitalo
,
A.
,
Ghalamchi
,
B.
,
Uzhegov
,
N.
,
Smirnov
,
A.
, and
Malkamäki
,
M.
,
2016
, “
Design of a 400 kW Gas Turbine Prototype
,”
ASME
Paper No. GT2016-56444.10.1115/GT2016-56444
16.
Wang
,
L.
,
2009
,
Model Predictive Control System Design and Implementation Using MATLAB®
,
Springer
,
London, UK
.
17.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
,
2014
, “
Plant Management Tools Tested With a Small-Scale Distributed Generation Laboratory
,”
Energy Convers. Manage.
,
78
, pp.
105
113
.10.1016/j.enconman.2013.10.044
18.
Maamouri
,
R.
,
Guilbert
,
D.
,
Zasadzinski
,
M.
, and
Rafaralahy
,
H.
,
2021
, “
Proton Exchange Membrane Water Electrolysis: Modeling for Hydrogen Flow Rate Control
,”
Int. J. Hydrogen Energy
,
46
(
11
), pp.
7676
7700
.10.1016/j.ijhydene.2020.11.276
19.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
,
2007
, “
Early Start-Up of Solid Oxide Fuel Cells Hybrid Systems With Ejector Cathodic Recirculation: Experimental Results and Model Verification
,”
Proc. IMechE, Part A, Power Energy
,
221
(
5
), pp.
627
635
.10.1243/09576509JPE438
20.
Ghigliazza
,
F.
,
Traverso
,
A.
,
Massardo
,
A. F.
,
Wingate
,
J.
, and
Ferrari
,
M. L.
,
2009
, “
Generic Real-Time Modeling of Solid Oxide Fuel Cell Hybrid Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
2
), p.
021312
.10.1115/1.3080553
21.
Mantelli
,
L.
,
Ferrari
,
M. L.
, and
Traverso
,
A.
,
2021
, “
Dynamics and Control of a Turbocharged Solid Oxide Fuel Cell System
,”
Appl. Therm. Eng.
,
191
, p.
116862
.10.1016/j.applthermaleng.2021.116862
You do not currently have access to this content.