A cold, initially-dry column of sand receives a sudden inflow of dry saturated Freon vapor (CCl3F) from a high-pressure high-temperature reservoir. Condensation occurs as the hot vapor penetrates into the cold sand, resulting in a co-current liquid/vapor flow. The axial distribution of condensate is wave-like with a (Buckley/Leverett-type) saturation-jump on the leading edge. Temperature and pressure profiles are in good agreement with a simple integral analysis which includes the essential features of the process: vapor-phase mass transfer, fluid/solid energy transfer by condensation, and liquid-phase flooding of the pore volume. The reported ensemble of experiments confirms the theoretical model over a broad range of saturation (from nearly dry to liquid-full) and over a broad range of Reynolds number (from Darcy flow to inertia-dominated flow). The considered problem is exemplary of the phase-change flows which occur in a number of geologic applications: containment of underground nuclear tests, steam stimulation of oil fields, geothermal energy, and in situ combustion processes.

This content is only available via PDF.
You do not currently have access to this content.