Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al2O3 particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.
Issue Section:
Properties and Property Measurements
1.
Abernethy
R. B.
Benedict
R. P.
Dowdell
R. B.
1985
, “ASME Measurement Uncertainty
,” ASME Journal of Fluids Engineering
, Vol. 107
, pp. 161
–164
.2.
Ahuja
A. S.
1975
, “Augmentation of Heat Transport in Laminar Flow of Polystyrene Suspensions. I. Experiments and Results
,” J. Appl. Phys.
, Vol. 46
, No. 8
, pp. 3408
–3416
.3.
Ashley
S.
1994
, “Small-scale Structure Yields Big Property Payoffs
,” Mechanical Engineering
, Vol. 116
, No. 2
, pp. 52
–57
.4.
Auriault
J.-L.
Ene
H. I.
1994
, “Macroscopic Modelling of Heat Transfer in Composites with Interfacial Thermal Barrier
,” Int. J. Heat Mass Transfer
, Vol. 37
, No. 18
, pp. 2885
–2892
.5.
Bentley
J. P.
1984
, “Temperature Sensor Characteristics and Measurement System Design
,” J. Phys. E: Sci. Instrum.
, Vol. 17
, pp. 430
–439
.6.
Benveniste
Y.
1987
, “Effective Thermal Conductivity of Composites with a Thermal Contact Resistance between the Constituents
,” J. Appl. Phys.
, Vol. 61
, No. 16
, pp. 2840
–2843
.7.
Bonnecaze
R. R.
Brady
J. F.
1991
, “The Effective Conductivity of Random Suspensions of Spherical Particles
,” Proc. R. Soc. Lond.
, Vol. A432
, pp. 445
–465
.8.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, 2nd Ed., Oxford University Press, New York, p. 510.
9.
Chiew
Y. C.
Glandt
E. D.
1987
, “Effective Conductivity of Dispersions: The Effect of Resistance at the Particle Surfaces
,” Chem. Eng. Sci.
, Vol. 42
, No. 11
, pp. 2677
–2685
.10.
Choi, U. S., 1995, “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” Developments and Applications of Non-Newtonian Flows, D. A. Siginer and H. P. Wang, eds., FED-Vol. 231/MD-Vol. 66, ASME, New York, pp. 99–105.
11.
Coleman, H. W., and Steele, W. G., 1989, Experimentation and Uncertainty Analysis for Engineers, John Wiley and Sons, New York.
12.
Concalves
L. C. C.
Kolodziej
J. A.
1993
, “Determination of Effective Thermal Conductivity in Fibrous Composites with Imperfect Thermal Contact between Constituents
,” Int. Comm. Heat Mass Transfer
, Vol. 20
, pp. 111
–121
.13.
Davis
R. H.
1986
, “The Effective Thermal Conductivity of a Composite Material with Spherical Inclusions
,” International Journal of Thermophysics
, Vol. 7
, No. 3
, pp. 609
–620
.14.
Eastman, J. A., Choi, U. S., Li, S., Thompson, L. J., and Lee, S., 1997, “Enhanced Thermal Conductivity through the Development of Nanofluids,” Proceedings of the Symposium on Nanophase and Nanocomposite Materials II, Vol. 457, Materials Research Society, Boston, pp. 3–11.
15.
Flik
M. I.
Tien
C. L.
1990
, “Size Effect on the Thermal Conductivity of High-T Thin-Film Superconductors
,” ASME JOURNAL OF HEAT TRANSFER
, Vol. 112
, pp. 872
–881
.16.
Geiger, G. H., and Poirier, D. R., 1973, Transport Phenomena in Metallurgy, Addison-Wesley, Reading, MA, p. 190.
17.
Gleiter
H.
1989
, “Nanocrystalline Materials
,” Prog. Mater. Sci.
, Vol. 33
, pp. 223
–315
.18.
Granqvist
C. G.
Buhrman
R. A.
1976
, “Ultrafine Metal Particles
,” J. Appl. Phys.
, Vol. 47
, p. 2200
2200
.19.
Hamilton
R. L.
Crosser
O. K.
1962
, “Thermal Conductivity of Heterogeneous Two-Component Systems
,” I & EC Fundamentals
, Vol. 1
, No. 3
, pp. 187
–191
.20.
Hashin
Z.
Shtrikman
S.
1962
, “A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,” J. Appl. Phys.
, Vol. 33
, No. 10
, pp. 3125
–3131
.21.
Hu
Z. S.
Dong
J. X.
1998
, “Study on Antiwear and Reducing Friction Additive of Nanometer Titanium Oxide
,” WEAR
, Vol. 216
, pp. 92
–96
.22.
Jackson, D. J., 1975, Classical Electrodynamics, 2nd Ed., John Wiley and Sons, London.
23.
Jeffrey
D. J.
1973
, “Conduction Through a Random Suspension of Spheres
,” Proc. R. Soc. Lond.
, Vol. A335
, pp. 355
–367
.24.
Johns
A. I.
Scott
A. C.
Watson
J. T. R.
Ferguson
D.
1988
, “Measurement of the Thermal Conductivity of Gases by the Transient Hot Wire Method
,” Phil. Trans. R. Soc. Lond.
, Vol. A325
, pp. 295
–356
.25.
Kestin
J.
Wakeham
W. A.
1978
, “A Contribution to the Theory of the Transient Hot-wire Technique for Thermal Conductivity Measurement
,” Physica
, Vol. 92A
, pp. 102
–116
.26.
Kimoto
K.
Kamilaya
Y.
Nonoyama
M.
Uyeda
R.
1963
, “An Electron Microscope Study on Fine Metal Particles Prepared by Evaporation in Argon Gas at Low Pressure
,” Jpn. J. Appl. Phys.
, Vol. 2
, p. 702
702
.27.
Lee, S. P., and Choi, U. S., 1996, “Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems,” Recent Advances in Solids/Structures and Application of Metallic Materials, Y. Kwon, D. Davis, and H. Chung, eds., PVP-Vol. 342/MD-Vol. 72, ASME, New York, pp. 227–234.
28.
Lu
S.
Lin
H.
1996
, “Effective Conductivity of Composites Containing Aligned Spherical Inclusions of Finite Conductivity
,” J. Appl. Phys.
, Vol. 79
, No. 9
, pp. 6761
–6769
.29.
Majumdar, A., 1998, “Microscale Energy Transport in Solids,” Microscale Energy Transport, C. L. Tien, A. Majumdar, and F. Gerner, eds., Taylor & Francis, Washington, DC.
30.
Masuda
H.
Ebata
A.
Teramae
K.
Hishinuma
N.
1993
, “Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-fine Particles (Dispersion of γ-Al2O3, SiO2, and TiO2 Ultra-fine particles)
,” Netsu Bussei
(Japan), Vol. 4
, No. 4
, pp. 227
–233
.31.
Maxwell, J. C., 1881, “A Treatise on Electricity and Magnetism,” 2nd Ed., Vol. 1, Clarendon Press, Oxford, U.K., p. 435.
32.
Nagasaka
Y.
Nagashima
A.
1981
, “Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-wire Method
,” J. Phys. E: Sci. Instrum.
, Vol. 14
, pp. 1435
–1440
.33.
Ni
F.
Gu
G. Q.
Chen
K. M.
1997
, “Effective Thermal Conductivity of Nonlinear Composite Media with Contact Resistance
,” Int. J. Heat Mass Transfer
, Vol. 40
, pp. 943
–949
.34.
Roder
H. M.
1981
, “A Transient Hot Wire Thermal Conductivity Apparatus for Fluids
,” Journal of Research of the National Bureau of Standards
, Vol. 86
, No. 5
, pp. 457
–493
.35.
Rohrer
H.
1996
, “The Nanoworld: Chances and Challenges
,” Microelectronic Engineering
, Vol. 32
, No. 1–4
, pp. 5
–14
.36.
Sohn
C. W.
Chen
M. M.
1981
, “Microconvective Thermal Conductivity in Dispersed Two-Phase Mixtures as Observed in a Low Velocity Couette Flow Experiment
,” ASME JOURNAL OF HEAT TRANSFER
, Vol. 103
, pp. 47
–51
.37.
Soyez, G., Eastman, J. A., DiMelfi, R. J., and Thompson, L. J., 1998, private communication.
38.
Touloukian, Y. S., and Ho, C. Y., eds., 1970 to 1977, Thermal Properties of Matter, The TPRC Data Series, Plenum Press, New York.
This content is only available via PDF.
Copyright © 1999
by The American Society of Mechanical Engineers
You do not currently have access to this content.