The measured thermal resistance across a thin film deposited on a substrate often includes the internal thermal resistance within the film and the thermal boundary resistance (TBR) across the film-substrate interface. These two resistances are frequently lumped and reported as an equivalent thermal conductivity of the film. Two fundamental questions should be answered regarding the use of this equivalent thermal conductivity. One is whether it leads to the correct temperature distribution inside the film. The other one is whether it is applicable for thin films with internal heat generation. This paper presents a study based on the Boltzmann transport equation (BTE) to treat phonon heat conduction inside the film and across the film-substrate interface simultaneously, for the cases with and without internal heat generation inside the film. Material systems studied include SiO2 and diamond films on Si substrates, representative of thin-film materials with low and high thermal conductivity. It is found that for a SiO2 film on a Si substrate, the film thermal conductivity and TBR can be treated independently, while for a diamond film on a Si substrate, the two are related to each other by the interface scattering. When the free surface behaves as a black phonon emitter, the TBR for thin diamond films with internal heat generation is the same as that without the internal heat generation. When the free surface is adiabatic, however, the TBR increases and approaches the value of the corresponding black surface as the film thickness increases. Results of this study suggest that great care must be taken when extending the effective thermal conductivity measured for thin films under one experimental condition to other application situations.

1.
Tien, C. L., Majumdar, A., and Gerner, F., 1998, Microscale Energy Transport, Taylor and Francis, New York.
2.
Cahill
,
D. G.
,
Fischer
,
H. E.
,
Klitsner
,
T.
,
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1988
, “
Thermal Conductivity of Thin Films: Measurements and Understanding
,”
J. Vac. Sci. Technol. A
,
7
, pp.
1259
1266
.
3.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
, pp.
605
668
.
4.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
,
115
, pp.
7
16
.
5.
Chen
,
G.
, and
Tien
,
C. L.
,
1993
, “
Thermal Conductivities of Quantum Well Structures
,”
J. Thermophys. Heat Transfer
,
7
, pp.
311
318
.
6.
Little
,
W. A.
,
1959
, “
The Transport of Heat Between Dissimilar Solids at Low Temperatures
,”
Can. J. Phys.
,
37
, pp.
334
349
.
7.
Lee
,
S.-M.
, and
Cahill
,
D. G.
,
1997
, “
Heat Transport in Thin Dielectric Films
,”
J. Appl. Phys.
,
81
, pp.
2590
2595
.
8.
Goodson
,
K. E.
,
Flik
,
M. I.
,
Su
,
L. T.
, and
Antoniadis
,
D. A.
,
1993
, “
Annealing-Temperature Dependence of the Thermal Conductivity of LPCVD Silicon-Dioxide Layers
,”
IEEE Electron Device Lett.
,
14
, pp.
490
492
.
9.
Goodson
,
K. E.
,
Kading
,
O. W.
,
Rosler
,
M.
, and
Zachai
,
R.
,
1995
, “
Experimental Investigation of Thermal Conduction Normal to Diamond-silicon Boundaries
,”
J. Appl. Phys.
,
77
, pp.
1385
1392
.
10.
Chen
,
G.
,
1998
, “
Thermal Conductivity and Ballistic-Phonon Transport in the Crossplane Direction of Superlattices
,”
Phys. Rev. B
,
57
, pp.
14958
14973
.
11.
Jen
,
C.-P.
, and
Chieng
,
C.-C.
,
1998
, “
Microscale Thermal Characterization for Two Adjacent Dielectric Thin Films
,”
J. Thermophys. Heat Transfer
,
12
, pp.
146
152
.
12.
Gaze
,
J.
,
Oyanagi
,
N.
,
Yamamoto
,
I.
, and
Izawa
,
H.
,
1998
, “
Laser Ablation Doping Process for the Synthesis of Conductive Diamond Thin Film
,”
Thin Solid Films
,
322
, pp.
28
32
.
13.
Min
,
G.
, and
Rowe
,
D. M.
,
1999
, “
Cooling Performance of Integrated Thermoelectric Microcooler
,”
Solid-State Electron.
,
43
, No.
5
, pp.
923
929
.
14.
Chen
,
G.
,
1997
, “
Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
,”
ASME J. Heat Transfer
,
119
, pp.
220
229
.
15.
Siegel, R., and Howell, J., 1993, Thermal Radiation Heat Transfer, Hemisphere, Washington, D.C.
16.
Ziman, J. M., 1960, Electrons and Phonons, Clarendon Press, Oxford, England.
17.
Shen
,
P.
, and
Zhou
,
M.
,
1991
, “
Heat Conduction of Amorphous Solids: Simulation Results on Model Structure
,”
Science
,
253
, pp.
539
542
.
18.
Goodson
,
K. E.
,
1996
, “
Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures
,”
ASME J. Heat Transfer
,
118
, pp.
279
286
.
19.
Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., 1970, Thermophysical Properties of Matter, IFI/Plenum, New York.
20.
Cahill
,
D. G.
, and
Pohl
,
R. O.
,
1987
, “
Thermal Conductivity of Amorphous Solids Above the Plateau
,”
Phys. Rev. B
,
35
, pp.
4067
4072
.
21.
Shackelford, J. F., ed., 1994, CRC Materials Science and Engineering Handbook, 2nd Ed., CRC Press, Boca Raton, FL.
22.
Brady, G. S., and Clauser, H. R., 1986, Materials Handbook, 20th Ed., McGraw-Hill, New York.
23.
Morath
,
C. J.
,
Maris
,
H. J.
,
Cuomo
,
J. J.
,
Pappas
,
D. L.
,
Grill
,
A.
,
Patel
,
V. V.
,
Doyle
,
J. P.
, and
Saenger
,
K. L.
,
1994
, “
Picosecond Optical Studies of Amorphous Diamond and Diamond-Like Carbon: Thermal Conductivity and Longitudinal Sound Velocity
,”
J. Appl. Phys.
,
76
, pp.
2636
2640
.
You do not currently have access to this content.