This work introduces a novel method that enhances the heat transfer from a given surface by using porous fins. The thermal performance of porous fins is estimated and compared with that of the conventional solid fins. It is found that using porous fin of porosity ε may enhance the performance of an equal size conventional solid fin and, as a result, save 100 ε percent of the fin material. The effect of different design and operating parameters on the porous fin thermal performance is investigated. Examples of these parameters are Ra number, Da number, and thermal conductivity ratio. It is found that more enhancement in the porous fin performance may be achieved as Ra increases especially at large Da numbers. Also, it is found that there is an optimum limit for the thermal conductivity ratio beyond which there is no further improvement in the fin performance.

1.
Duffin
,
R.
,
1959
, “
A Variational Problem Relating to Cooling Fins
,”
J. Math. Mech.
,
8
, pp.
47
56
.
2.
Jany
,
P.
, and
Bejan
,
A.
,
1988
, “
Ernst Schmidt’s Approach to Fin Optimization: An Extension to Fins with Variable Conductivity and the Design of Ducts for Fluid Flow
,”
Int. J. Heat Mass Transf.
,
31
, pp.
1635
1644
.
3.
Bejan, A., 1984, Convection Heat Transfer, John Wiley and Sons, New York.
4.
Snider
,
A. D.
, and
Kraus
,
A. D.
,
1986
, “
The Quest for the Optimum Longitudinal Fin Profile
,”
ASME HTD
,
64
, pp.
43
48
.
5.
Poulikakos
,
D.
, and
Bejan
,
A.
,
1982
, “
Fin Geometry for Minimum Entropy Generation in Forced Convection
,”
ASME J. Heat Transfer
,
104
, pp.
616
623
.
6.
Irey
,
R. K.
,
1968
, “
Errors in the One-Dimensional Fin Solution
,”
ASME J. Heat Transfer
,
90
, pp.
175
176
.
7.
Lau
,
W.
, and
Tan
,
C. W.
,
1973
, “
Errors in One-Dimensional Heat Transfer Analyses in Straight and Annular Fins
,”
ASME J. Heat Transfer
,
95
, pp.
549
551
.
8.
Stachiewicz
,
J. W.
,
1969
, “
Effect of Variation of Local Film Coefficient on Fin Performance
,”
ASME J. Heat Transfer
,
91
, pp.
21
26
.
9.
Look
,
D. C.
, Jr.
,
1988
, “
Two-Dimensional Fin Performance: Bi (Top Surface) ⩾ Bi (Bottom Surface)
,”
ASME J. Heat Transfer
,
110
, pp.
780
782
.
10.
Alkam
,
M.
, and
Al-Nimr
,
M. A.
,
1999
, “
Improving the Performance of Double-Pipe Heat Exchangers by Using Porous Substrates
,”
Int. J. Heat Mass Transf.
,
42
, pp.
3609
3618
.
11.
Al-Nimr
,
M. A.
, and
Alkam
,
A.
,
1998
, “
A Modified Tubeless Solar Collector Partially Filled with Porous Substrate
,”
Renewable Energy
,
13
(
2
), pp.
165
173
.
12.
Alkam
,
M. K.
, and
Al-Nimr
,
M. A.
,
1999
, “
Solar Collectors with Tubes Partially Filled with Porous Substrates
,”
ASME J. Sol. Energy Eng.
,
121
, pp.
20
24
.
13.
Al-Nimr
,
M. A.
, and
Alkam
,
M.
,
1997
, “
Unsteady Non-Darcian Forced Convection Analysis in an Annulus Partially Filled with a Porous Material
,”
ASME J. Heat Transfer
,
119
, pp.
799
804
.
14.
Vafai
,
K.
, and
Kim
,
S. J.
,
1995
, “
On the Limitations of the Brinkman-Forchheimer-Extended Darcy Equation
,”
Int. J. Heat Fluid Flow
,
16
, pp.
11
15
.
15.
Engelman, M. S., 1993, Fidap Theoretical Manual-Revision 7, 1st ed., Fluid Dynamics International, Inc., Evanston, IL.
16.
del Vahl Davis
,
G.
,
1983
, “
Natural Convection in a Square Cavity–A Benchmark Solution
,”
Int. J. Numer. Methods Fluids
,
3
, pp.
249
264
.
You do not currently have access to this content.