A precision method for attenuating temperature variations in a high-throughput control fluid stream is described and analyzed. In contrast to earlier investigations, the present study emphasizes heat transfer analysis of the constituent control device and derives theoretical descriptions of system responses to time-varying fluid temperatures. Experiments demonstrate that the technique provides: (1) frequency-dependent attenuation which is several orders of magnitude greater than that obtained via a perfect mixing volume; (2) attenuation, over two decades of disturbance frequency, that reduces in-flow temperature variations by factors ranging from 10 to 104; (3) asymptotic attenuation greater than three orders of magnitude for spectral components having periods less than the device thermal equilibrium time; and (4) attenuation which is fully consistent with theoretical predictions. The model developed provides design criteria for tailoring system performance. In particular, it is shown that for a given control stream flow rate, the magnitude of maximal attenuation can be adjusted by varying the thermal resistance between the flow and attenuating medium, while the range of frequencies maximally attenuated can be adjusted by varying the product of thermal resistance and attenuating medium heat capacity. The analysis and design are general and should prove useful in the design and analysis of other high-throughput precision temperature control systems.

1.
Bryan
,
J.
,
1990
, “
International Status of Thermal Error Research
,”
Annals of the CIRP
,
39
, pp.
645
656
.
2.
Slocum, A. H., 1992, Precision Machine Design, Prentice Hall, NJ, p. 96.
3.
Smith, S. T., and Chetwynd, D. G., 1997, Foundations of Ultraprecision Mechanism Design, Gordon and Breach, Amsterdam, p. 84.
4.
Cutkosky
,
R. D.
, and
Field
,
B. F.
,
1974
, “
Standard Cell Enclosure with 20 μK Stability
,”
IEEE Trans. Instrum. Meas.
,
23
, pp.
295
298
.
5.
Lee
,
H. S.
,
Yang
,
S. H.
, and
Chung
,
N. S.
,
1990
, “
Temperature Controller Using an Error Signal Modulation
,”
Rev. Sci. Instrum.
,
61
, pp.
1329
1331
.
6.
Dratler
,
J.
,
1974
, “
A Proportional Thermostat with 10 Microdegree Stability
,”
Rev. Sci. Instrum.
,
45
, pp.
1435
1444
.
7.
Esman
,
R. D.
, and
Rode
,
D. L.
,
1983
, “
100 μK Temperature Controller
,”
Rev. Sci. Instrum.
,
54
, pp.
1368
1370
.
8.
Cutkowsky
,
R. D.
, and
Davis
,
R. S.
,
1981
, “
Simple Control Circuit for Temperature Control and Other Bridge Applications
,”
Rev. Sci. Instrum.
,
52
, pp.
1403
1405
.
9.
Strem
,
R. B.
,
Das
,
B. K.
, and
Greer
,
S. C.
,
1981
, “
Digital Temperature Control and Measurement System
,”
Rev. Sci. Instrum.
,
52
, pp.
1705
1708
.
10.
Williams
,
G. I.
, and
House
,
W. A.
,
1981
, “
Thermistor Controlled Water/Oil Bath for Precision Measurements in the Range 0-30 C
,”
J. Phys. E
,
14
, pp.
755
760
.
11.
Miller
,
R. J.
, and
Gleeson
,
H. F.
,
1994
, “
A Computer Interfaced High-Stability Temperature Controller and Heating Stage for Optical Microscopy
,”
Measurement Science and Technology
,
14
, pp.
904
911
.
12.
Sarid
,
D.
, and
Cannell
,
D. S.
,
1974
, “
A 15 Microdegree Temperature Controller
,”
Rev. Sci. Instrum.
,
45
, pp.
1082
1089
.
13.
Harvey
,
M. E.
,
1968
, “
Precision Temperature-Controlled Water Bath
,”
Rev. Sci. Instrum.
,
39
, pp.
13
18
.
14.
Ogasawara
,
H.
,
1986
, “
Method of Precision Temperature Control Using Flowing Water
,”
Rev. Sci. Instrum.
,
57
, pp.
3048
3052
.
15.
Priel
,
Z.
,
1978
, “
Thermostat with a Stability of 3.5 μK
,”
J. Phys. E
,
11
, pp.
27
30
.
16.
Iglesias
,
M. C. L.
, and
Baron
,
M.
,
1990
, “
Temperature Control in Small Air-Heated Measuring Cells
,”
Rev. Sci. Instrum.
,
61
, pp.
2245
2246
.
17.
Ogasawara
,
H.
, and
Nishimura
,
J.
,
1982
, “
Frequency Stabilization of Internal-Mirror He-Ne Lasers by a Flowing Water Method
,”
Appl. Opt.
,
21
, pp.
1156
1157
.
18.
Ogasawara
,
H.
, and
Nishimura
,
J.
,
1983
, “
Frequency Stabilization of Internal-Mirror He-Ne Lasers
,”
Appl. Opt.
,
22
, pp.
655
657
.
19.
Sydenham
,
P. H.
, and
Collins
,
G. C.
,
1975
, “
Thermistor Controller with Microkelvin Stability
,”
J. Phys. E
,
8
, pp.
311
315
.
20.
Neto
,
F. S.
, and
Cotta
,
R. M.
,
1992
, “
Counterflow Double-Pipe Heat Exchanger Analysis Using a Mixed Lumped-Differential Formulation
,”
Int. J. Heat Mass Transf.
,
35
, pp.
1723
1731
.
21.
Neto
,
F. S.
, and
Cotta
,
R. M.
,
1993
, “
Dynamic Analysis of Double-Pipe Heat Exchangers Subjected to Periodic Inlet Temperature Disturbances
,”
Warme and Stoffubertragung
,
18
, pp.
497
503
.
22.
Ozisik
,
M. N.
, and
Murray
,
R. L.
,
1974
, “
On the Solution of Linear Diffusion Problems With Variable Boundary Conditions
,”
ASME J. Heat Transfer
,
96
, pp.
48
51
.
23.
Incropera, F., and DeWitt, D., 1990, Introduction to Heat Transfer, Wiley, New York, p. 432.
24.
Dorf, R. C., and Bishop, R. H., 1995, Modern Control Systems, Addison-Wesley, New York, p. 394.
25.
Bejan, A., 1984, Convection Heat Transfer, Wiley, New York, p. 298.
26.
International Organization for Standardization, 1993, Guide to the Expression of Uncertainty in Measurements, Geneva.
27.
Beckwith, T. G., Marangoni, R. D., and Lienhard, J. H., 1993, Mechanical Measurements, Addison-Wesley, New York, p. 82.
You do not currently have access to this content.