Dielectric (high bandgap) materials represent an important and diverse class of materials in micro and nanotechnology, including MEMS devices, biomedical and bioengineering systems, multilayer thin film coatings, fiber optics, etc. Micromachining dielectrics using ultrafast lasers is an exciting and promising new research area with many significant advantages, including precision material removal, negligible heating of the workpiece, micron and sub-micron-size feature fabrication, and high aspect ratio features. During ultrafast laser processing of dielectrics, the intense laser pulse ionizes the irradiated material and produces an optical breakdown region, or plasma, that is characterized by a high density of free electrons. These high-density electrons can efficiently absorb a large fraction of the laser irradiance energy, part of which will then be coupled into the bulk material, resulting in material removal through direct vaporization. The energy deposited into the material depends on the time and space-dependent breakdown region, the plasma rise time, and the plasma absorption coefficient. Higher coupling efficiency results in higher material removal rate; thus energy deposition is one of the most important issues for ultrafast laser materials processing, particularly for micron and sub-micron-scale laser materials processing. In the present work, a femtosecond breakdown model is developed to investigate energy deposition during ultrafast laser material interactions. One substantial contribution of the current work is that pulse propagation effects have been taken into account, which have been shown to become significant for pulse durations less than 10 ps. By accounting for the pulse propagation, the time and space-resolved plasma evolution can be characterized and used to determine the energy deposition through plasma absorption. With knowledge of the plasma absorption, changes in the pulse profile as it propagates in the focal region can be determined as well. Absorption of the laser pulse by plasma in water is compared with experimental data to validate the model, as water is a well characterized dielectric. The model, however, is also applicable to other transparent or moderately absorbing solid and liquid dielectric media during ultrafast laser-materials interactions.

1.
Liu
,
X.
,
Du
,
D.
, and
Mourou
,
G.
,
1997
, “
Laser Ablation and Micromachining With Ultrashort Laser Pulses
,”
IEEE J. Quantum Electron.
,
33
, pp.
1706
1716
.
2.
Noack
,
J.
, and
Vogel
,
A.
,
1999
, “
Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density
,”
IEEE J. Quantum Electron.
,
35
, pp.
1156
1167
.
3.
Kennedy
,
P. K.
,
Hammer
,
D. X.
, and
Rockwell
,
B. A.
,
1997
, “
Laser-Induced Breakdown in Aqueous Media
,”
Prog. Quantum Electron.
,
21
, pp.
155
248
.
4.
Nikogosyan
,
D. N.
,
Oraevsky
,
A. A.
, and
Rupasov
,
V. I.
,
1983
, “
2 Photon Ionization and Dissociation of Liquid Water by Powerful Laser UV Radiation
,”
Chem. Phys.
,
77
, pp.
131
143
.
5.
Du
,
D.
,
Liu
,
X.
, and
Mourou
,
G.
,
1996
, “
Reduction of Multi-Photon Ionization in Dielectrics Due to Collisions
,”
Appl. Phys. B
,
63
, pp.
617
621
.
6.
Shen, Y. R., 1984, The Principles of Nonlinear Optics, John Wiley & Sons, Inc., New York.
7.
Feng
,
Q.
,
Moloney
,
J. V.
,
Newell
,
A. C.
,
Wright
,
E. M.
,
Cook
,
K.
,
Kennedy
,
P. K.
,
Hammer
,
D. X.
,
Rockwell
,
B. A.
, and
Thompson
,
C. R.
,
1997
, “
Theory and Simulation on the Threshold of Water Breakdown Induced by Focused Ultrashort Laser Pulses
,”
IEEE J. Quantum Electron.
,
33
, pp.
127
137
.
8.
Korte
,
F.
,
Nolte
,
S.
,
Chichkov
,
B. N.
,
Bauer
,
T.
,
Kamlage
,
G.
,
Wagner
,
T.
,
Fallnich
,
C.
, and
Welling
,
H.
,
1999
, “
Far-Field and Near-Field Material Processing with Femtosecond Laser Pulses
,”
Appl. Phys. A
,
69
, pp.
S7–S11
S7–S11
.
9.
Docchio
,
F.
,
Regondi
,
P.
,
Capon
,
M. R. C.
, and
Mellerio
,
J.
,
1988
, “
Study of the Temporal and Spatial Dynamics of Plasmas Induced in Liquids by Nanosecond Nd:YAG Laser Pulses. 1. Analysis of the Plasma Starting Times
,”
Appl. Opt.
,
27
, pp.
3661
3668
.
10.
Docchio
,
F.
,
Regondi
,
P.
,
Capon
,
M. R. C.
, and
Mellerio
,
J.
,
1988
, “
Study of the Temporal and Spatial Dynamics of Plasmas Induced in Liquids by Nanosecond Nd:YAG Laser-Pulses. 2. Plasma Luminescence and Shielding
,”
Appl. Opt.
,
27
, pp.
3669
3674
.
11.
Fan
,
C. H.
, and
Longtin
,
J. P.
,
2001
, “
Modeling Optical Breakdown in Dielectrics during Ultrafast Laser Processing
,”
Appl. Opt.
,
40
, pp.
3124
3131
.
12.
Siegman, A. E., 1986, Lasers, University Science Books, Sausalito, CA.
13.
Nahen
,
K.
, and
Vogel
,
A.
,
1996
, “
Plasma Formation in Water by Picosecond and Nanosecond Nd:YAG Laser Pulses—Part II: Transmission, Scattering, and Reflection
,”
IEEE J. Sel. Top. Quantum Electron.
,
2
, pp.
861
871
.
14.
Vogel
,
A.
,
Nahen
,
K.
,
Theisen
,
D.
, and
Noack
,
J.
,
1996
, “
Plasma Formation in Water by Picosecond and Nanosecond Nd:YAG Laser Pulses—Part I: Optical Breakdown at Threshold and Superthreshold Irradiance
,”
IEEE J. Sel. Top. Quantum Electron.
,
2
, pp.
847
860
.
15.
Raizer
,
Y. P.
,
1966
, “
Breakdown and Heating of Gases Under the Influence of a Laser Beam
,”
Sov. Phys. Usp
,
8
, pp.
650
673
.
16.
Hammer
,
D. X.
,
Jansen
,
E. D.
,
Frenz
,
M.
,
Noojin
,
G. D.
,
Thomas
,
R. J.
,
Noack
,
J.
,
Vogel
,
A.
,
Rockwell
,
B. A.
, and
Welch
,
A. J.
,
1997
, “
Shielding Properties of Laser-Induced Breakdown in Water for Pulse Durations from 5 ns to 125 fs
,”
Appl. Opt.
,
36
, pp.
5630
5640
.
17.
Perry
,
M. D.
,
Stuart
,
B. C.
,
Banks
,
P. S.
,
Feit
,
M. D.
,
Yanovsky
,
V.
, and
Rubenchik
,
A. M.
,
1999
, “
Ultrashort-Pulse Laser Machining of Dielectric Materials
,”
J. Appl. Phys.
,
85
, pp.
6803
6810
.
18.
Stuart
,
B. C.
,
Feit
,
M. D.
,
Herman
,
S.
,
Rubenchik
,
A. M.
,
Shore
,
B. W.
, and
Perry
,
M. D.
,
1996
, “
Optical Ablation by High-Power Short-Pulse Lasers
,”
J. Opt. Soc. Am. B
,
13
, pp.
459
468
.
19.
Kennedy
,
P. K.
,
1995
, “
A First-Order Model for Computation of Laser-Induced Breakdown Thresholds in Ocular and Aqueous Media. 1. Theory
,”
IEEE J. Quantum Electron.
,
31
, pp.
2241
2249
.
20.
Rae
,
S. C.
, and
Burnett
,
K.
,
1992
, “
Possible Production of Cold Plasmas Through Optical-Field-Induced Ionization
,”
Phys. Rev. A
46
, pp.
2077
2083
.
21.
Stone
,
J.
,
1972
, “
Measurements of the Absorption of Light in Low-Loss Liquids
,”
J. Opt. Soc. Am.
,
62
, pp.
327
333
.
22.
Longtin
,
J. P.
, and
Tien
,
C. L.
,
1997
, “
Efficient Laser Heating of Transparent Liquids Using Multiphoton Absorption
,”
Int. J. Heat Mass Transf.
,
40
, pp.
951
959
.
23.
Longtin
,
J. P.
,
1999
, “
Using Multiphoton Absorption With High-Intensity Lasers to Heat Transparent Liquids
,”
Chem. Eng. Technol.
,
22
, pp.
77
80
.
24.
Fan, C. H., Sun, J., and Longtin, J. P., “Time and Space-Resolved Plasma Absorption of a Femtosecond Laser Pulse in Dielectrics,” 35th National Heat Transfer Conference, Anaheim, CA, NHTC01-11222.
25.
Wang
,
L. J.
,
Kuzmich
,
A.
, and
Dogariu
,
A.
,
2000
, “
Gain-Assisted Superluminal Light Propagation
,”
Nature (London)
,
406
, pp.
277
279
.
You do not currently have access to this content.