The two-temperature model has been widely used to predict the electron and phonon temperature distributions in ultrashort laser processing of metals. However, estimations of some important thermal and optical properties in the existing two-temperature model are limited to low laser fluences in which the electron temperatures are much lower than the Fermi temperature. This paper extends the existing two-temperature model to high electron temperatures by using full-run quantum treatments to calculate the significantly varying properties, including the electron heat capacity, electron relaxation time, electron conductivity, reflectivity, and absorption coefficient. The proposed model predicts the damage thresholds more accurately than the existing model for gold films when compared with published experimental results.

1.
Rethfeld
,
B.
,
Kaiser
,
A.
,
Vicanek
,
M.
, and
Simon
,
G.
, 2002, “
Ultrafast Dynamics of Nonequilibrium Electrons in Metals under Femtosecond Laser Irradiation
,”
Phys. Rev. B
0163-1829,
65
, pp.
214303
214313
.
2.
Del Fatti
,
N.
,
Voisin
,
C.
,
Achermann
,
M.
,
Tzortzakis
,
S.
,
Christofilos
,
D.
, and
Vallee
,
F.
, 2000, “
Nonequilibrium Electron Dynamics in Noble Metals
,”
Phys. Rev. B
0163-1829,
61
, pp.
16956
16966
.
3.
Fujimoto
,
J. G.
,
Liu
,
J. M.
,
Ippen
,
E. P.
, and
Bloembergen
,
N.
, 1984, “
Femtosecond Laser Interaction with Metallic Tungsten and Nonequilibrium Electron and Lattice Temperatures
,”
Phys. Rev. Lett.
0031-9007,
53
, pp.
1837
1840
.
4.
Schoenlein
,
R. W.
,
Lin
,
W. Z.
,
Fujimoto
,
J. G.
, and
Eesley
,
G. L.
, 1987, “
Femtosecond Studies of Nonequilibrium Electronic Processes in Metals
,”
Phys. Rev. Lett.
0031-9007,
58
, pp.
1680
1683
.
5.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1992, “
Short-Pulse Laser Heating on Metals
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
719
726
.
6.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Heat Transfer Mechanisms during Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
835
841
.
7.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1994, “
Femtosecond Laser Heating of Multi-Layer Metals-I Analysis
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
2789
2797
.
8.
Qiu
,
T. Q.
,
Juhasz
,
T.
,
Suarez
,
C.
,
Bron
,
W. E.
, and
Tien
,
C. L.
, 1994, “
Femtosecond Laser Heating of Multi-Layer Metals-II Experiments
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
2799
2808
.
9.
Tzou
,
D. Y.
,
Chen
,
J. K.
, and
Beraun
,
J. E.
, 2002, “
Hot-Electron Blast Induced by Ultrashort-Pulsed Lasers in Layered Media
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3369
3382
.
10.
Elsayed-Ali
,
H. E.
,
Norris
,
T. B.
,
Pessot
,
M. A.
, and
Mourou
,
G. A.
, 1987, “
Time-Resolved Observation of Electron-Phonon Relaxation in Copper
,”
Phys. Rev. Lett.
0031-9007
58
, pp.
1212
1215
.
11.
Schoenlein
,
R. W.
,
Lin
,
W. Z.
,
Fujimoto
,
J. G.
, and
Eesley
,
G. L.
, 1987, “
Femtosecond Studies of Nonequilibrium Electronic Processes in Metals
,”
Phys. Rev. Lett.
0031-9007,
58
, pp.
1680
1683
.
12.
Hertel
,
T.
,
Knoesel
,
E.
,
Wolf
,
M.
, and
Ertl
,
G.
, 1996, “
Ultrafast Electron Dynamics at Cu(111): Response of an Electron Gas to Optical Excitation
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
535
538
.
13.
Brorson
,
S. D.
,
Kazeroonian
,
A.
,
Moodera
,
J. S.
,
Face
,
D. W.
,
Cheng
,
T. K.
,
Ippen
,
E. P.
,
Dresselhaus
,
M. S.
, and
Dresselhaus
,
G.
, 1990, “
Femtosecond Room-Temperature Measurement of the Electron-Phonon Coupling Constant Gamma in Metallic Superconductors
,”
Phys. Rev. Lett.
0031-9007,
64
, pp.
2172
2175
.
14.
Eesley
,
G. L.
, 1986, “
Generation of Nonequilibrium Electron and Lattice Temperatures in Copper by Picosecond Laser Pulses
,”
Phys. Rev. B
0163-1829,
33
, pp.
2144
2151
.
15.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perel’man
,
T. L.
, 1974, “
Electron Emission from Metal Surfaces Exposed to Ultrashort Laser Pulses
,”
Sov. Phys. JETP
0038-5646,
39
, pp.
375
377
.
16.
Wellershoff
,
S.
,
Hohlfeld
,
J.
,
Güdde
,
J.
,
Matthias
,
E.
, 1999, “
The Role of Electron-Phonon Coupling in Femtosecond Laser Damage of Metals
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396
69
(Suppl.), pp.
99
107
.
17.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
, 1976,
Solid State Physics
,
Holt
, Rinehart, and Winston, New York.
18.
Kittel
,
C.
, 1986,
Introduction to Solid State Physics
,
J Wiley
, NY.
19.
Gamaly
,
E. G.
,
Rode
,
A. V.
,
Luther-Davies
,
B.
, and
Tikhonchuk
,
V. T.
, 2002, “
Ablation of Solids by Femtosecond Lasers: Ablation Mechanism and Ablation Thresholds for Metals and Dielectrics
,”
Phys. Plasmas
1070-664X,
9
, pp.
949
957
.
20.
Lee
,
Y. T.
, and
More
,
R. M.
, 1984, “
An Electron Conductivity Model for Dense Plasma
,”
Phys. Fluids
0031-9171,
27
(
5
), pp.
1273
1286
.
21.
Jiang
,
L.
, and
Tsai
,
H. L.
, 2004, “
Prediction of Crater Shape in Femtosecond Laser Ablation of Dielectrics
,”
J. Phys. D
0022-3727
37
, pp.
1492
1496
.
22.
Jiang
,
L.
, and
Tsai
,
H. L.
, 2005, “
Energy Transport and Material Removal during Femtosecond Laser Ablation of Wide Bandgap Materials
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
3–4
), pp.
487
499
.
23.
Fox
,
M.
, 2001,
Optical Properties of Solids
,
Oxford University Press
, Oxford.
24.
Baierlein
,
R.
, 1999,
Thermal Physics
,
Cambridge University Press
, New York.
25.
Palpant
,
B.
,
Prével
,
B.
,
Lermé
,
J.
,
Cottancin
,
E.
, and
Pellarin
,
M.
, 1998, “
Optical Properties of Gold Clusters in the Size Range 2-4 nm
,”
Phys. Rev. B
0163-1829,
57
, pp.
1963
1970
.
26.
Nolte
,
S.
,
Momma
,
C.
,
Jacobs
,
H.
,
Tunnermann
,
A.
,
Chichkov
,
B. N.
,
Wellegehausen
,
B.
, and
Welling
,
H.
, 1997, “
Ablation of Metals by Ultrashort Laser Pulses
,”
J. Opt. Soc. Am. B
0740-3224
14
, pp.
2716
2722
.
27.
Stuart
,
B. C.
,
Feit
,
M. D.
,
Herman
,
S.
,
Rubenchik
,
A. M.
,
Shore
,
B. W.
, and
Perry
,
M. D.
, 1996, “
Optical Ablation by High-Power Short-Pulse Lasers
,”
J. Opt. Soc. Am. B
0740-3224,
13
, pp.
459
468
.
You do not currently have access to this content.