Linear stability analysis is performed to determine the critical Rayleigh number for the onset of convection in a fluid layer with phase-change-material particles. Sine and Gaussian functions are used for describing the large variation of apparent specific heat in a narrow phase changing temperature range. The critical conditions are numerically obtained using the fourth order Runge-Kutta-Gill finite difference method with Newton-Raphson iteration. The critical eigenfunctions of temperature and velocity perturbations are obtained. The results show that the critical Rayleigh number decreases monotonically with the amplitude of Sine or Gaussian function. There is a minimum critical Rayleigh number while the phase angle is between π2 and π, which corresponds to the optimum experimental convective mode.

1.
Booker
,
J. R.
, 1976, “
Thermal Convection with Strongly Temperature-Dependent Viscosity
,”
J. Fluid Mech.
0022-1120,
76
, pp.
741
754
.
2.
Stengel
,
K. C.
,
Oliver
,
D. S.
, and
Booker
,
J. R.
, 1982, “
Onset of Convection in a Variable-Viscosity Fluid
,”
J. Fluid Mech.
0022-1120,
120
, pp.
411
431
.
3.
Richer
,
F. M.
,
Nataf
,
H. C.
, and
Daly
,
S. F.
, 1983, “
Heat Transfer and Horizontally Averaged Temperature of Convection With Large Viscosity Variations
,”
J. Fluid Mech.
0022-1120,
129
, pp.
173
192
.
4.
Lu
,
J. W.
, and
Chen
,
F.
, 1995, “
Onset of Double-Diffusive Convection of Unidirectionally Solidifying Binary Solution with Variable Viscosity
,”
J. Cryst. Growth
0022-0248,
149
, pp.
131
140
.
5.
Char
,
M. I.
, and
Chen
,
C. C.
, 1997, “
Onset of Stationary Bénard-Marangoni Convection in a Fluid Layer with Variable Surface Tension and Viscosity
,”
J. Phys. D
0022-3727,
30
, pp.
3286
3295
.
6.
Goel
,
M.
,
Roy
,
S. K.
, and
Sengupta
,
S.
, 1994, “
Laminar Forced Convection Heat Transfer in Microcapsulated Phase Change Material Suspensions
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
4
), pp.
593
604
.
7.
Inaba
,
H.
,
Kim
,
M. J.
, and
Horibe
,
A.
, 2004, “
Melting Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurries With Plural Microcapsules Having Different Diameters
,”
ASME J. Heat Transfer
0022-1481,
126
(
4
), pp.
558
565
.
8.
Inaba
,
H.
, 2000, “
New Challenge in Advanced Thermal Energy Transportation Using Functionally Thermal Fluids
,”
Int. J. Therm. Sci.
1290-0729,
39
, pp.
991
1003
.
9.
Naterer
,
G. F.
,
Heat Transfer in Single and Multiphase Systems
,
CRC Press
, Boca Raton, Chap. 5.
10.
Roy
,
S. K.
, and
Sengupta
,
S.
, 1991, “
An Evaluation of Phase Change Microcapsules for Use in Enhanced Heat Transfer Fluids
, ”
Int. Commun. Heat Mass Transfer
0735-1933,
18
, pp.
495
507
.
11.
Bo
,
H.
,
Gustafsson
,
E. M.
, and
Setterwall
,
F.
, 1999, “
Tetradecane and Hexadecane Binary Mixtures as Phase Change Materials (PCMs) for Cool Storage in District Cooling Systems
, ”
Energy
0360-5442,
24
, pp.
1015
1028
.
12.
Inaba
,
H.
,
Dai
,
C.
, and
Horibe
,
A.
, 2003, “
Natural Convection Heat Transfer of Microemulsion Phase-Change-Material Slurry in Rectangular Cavities Heated from Below and Cooled from Above
, ”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4427
4438
.
13.
Dai
,
C.
, 2003, “
Natural Convection Heat Transfer and Heat Storage in Horizontal Rectangular Enclosures Filled With Microemulsion Phase Change Material Slurry
, ” Ph.D. thesis, Okayama University, Okayama, Japan.
14.
Selak
,
R.
, and
Lebon
,
G.
, 1997, “
Rayleigh-Marangoni Thermoconvective Instability With Non-Boussinesq Correction
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
785
798
.
15.
Chandrasekhar
,
S.
, 1961,
Hydrodynamic and Hydromagnetic Stability
,
Oxford University Press
, UK.
16.
Gene
,
H. G.
, and
James
,
M. O.
, 1992,
Scientific Computing and Differential Equations: An Introduction to Numerical Methods
,
Cambridge University Press
, Cambridge, UK.
You do not currently have access to this content.