The thermal conductivity of water- and ethylene glycol-based nanofluids containing alumina, zinc-oxide, and titanium-dioxide nanoparticles is measured using the transient hot-wire method. Measurements are performed by varying the particle size and volume fraction, providing a set of consistent experimental data over a wide range of colloidal conditions. Emphasis is placed on the effect of the suspended particle size on the effective thermal conductivity. Also, the effect of laser-pulse irradiation, i.e., the particle size change by laser ablation, is examined for ZnO nanofluids. The results show that the thermal-conductivity enhancement ratio relative to the base fluid increases linearly with decreasing the particle size but no existing empirical or theoretical correlation can explain the behavior. It is also demonstrated that high-power laser irradiation can lead to substantial enhancement in the effective thermal conductivity although only a small fraction of the particles are fragmented.

1.
Maxwell
,
J. C.
, 1881,
A Treatise on Electricity and Magnetism
, Vol.
1
, 2nd ed.,
Clarendon Press
, Oxford, p.
435
.
2.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
, 1993, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles
,”
Netsu Bussei
0913-946X,
4
, pp.
227
233
.
3.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
4.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
2252
2254
.
5.
Eastman
,
A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
718
720
.
6.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
, and
Liu
,
Y.
, 2002, “
Thermal Conductivity of Suspensions Containing Nanosized SiC Particles
,”
Int. J. Thermophys.
0195-928X,
23
, pp.
571
580
.
7.
Xie
,
H.
,
Lee
,
H.
,
Youn
,
W.
, and
Choi
,
M.
, 2003, “
Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities
,”
J. Appl. Phys.
0021-8979,
94
, pp.
4967
4971
.
8.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
9.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4316
4318
.
10.
Xuan
,
Y.
, and
Roetzel
,
W.
, 2000, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3701
3707
.
11.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
855
863
.
12.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
0196-4313,
1
, pp.
187
191
.
13.
Mafune
,
F.
,
Kohno
,
J.
,
Takeda
,
Y.
, and
Kondow
,
T.
, 2002, “
Growth of Gold Clusters into Nanoparticles in a Solution Following Laser-Induced Fragmentation
,”
J. Phys. Chem. B
1089-5647,
106
, pp.
8555
8561
.
14.
Takami
,
A.
,
Kurita
,
H.
, and
Koda
,
S.
, 1999, “
Laser-Induced Size Reduction of Noble Metal Particles
,”
J. Phys. Chem. B
1089-5647,
103
, pp.
1226
1232
.
15.
Sugiyama
,
M.
,
Okazaki
,
H.
, and
Koda
,
S.
, 2002, “
Size and Shape Transformation of TiO2 Nanoparticles by Irradiation of 308-nm Laser Beam
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
41
, pp.
4666
4674
.
16.
Yeh
,
M.
,
Yang
,
Y.
,
Lee
,
Y.
,
Lee
,
H.
,
Yeh
,
Y.
, and
Yeh
,
C.
, 1999, “
Formation and Characteristics of Cu Colloids from CuO Powder by Laser Irradiation in 2-Propanol
,”
J. Phys. Chem. B
1089-5647,
103
, pp.
6851
6857
.
17.
Kestin
,
J.
, and
Wakeham
,
A.
, 1978, “
A Contribution to the Theory at the Transient Hot-Wire Technique for Thermal Conductivity Measurement
,”
Physica A
0378-4371,
92
, pp.
102
116
.
18.
Roder
,
H. M.
, 1981, “
A Transient Hot Wire Thermal Conductivity Apparatus for Fluids
,”
J. Res. Natl. Bur. Stand.
0160-1741,
86
, pp.
457
493
.
19.
John
,
A. I.
,
Scott
,
A. C.
,
Watson
,
J. T. R.
, and
Ferguson
,
D.
, 1988, “
Measurement of the Thermal Conductivity of Gases by the Transient Hot Wire Method
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
A 325
, pp.
295
356
.
20.
Duenas
,
S.
,
Castan
,
E.
, and
Barbolla
,
J.
, 1999, “
Use of Anodic Tantalum Pentoxide for High-Density Capacitor Fabrication
,”
J. Mater. Sci.
0022-2461,
10
, pp.
379
384
.
21.
Lide
,
D. R.
, 2000,
CRC Handbook of Chemistry and Physics
, 81st ed.,
CRC Press
, Boca Raon, FL.
22.
Touloukian
,
Y. S.
, 1970,
Thermophysical Properties of Matter
, Vol.
2
,
IFI/Plenum
, New York.
23.
Jang
,
D.
,
Oh
,
B.
, and
Kim
,
D.
, 2004, “
Visualization of Microparticle Explosion and Flow Field in Nanoparticle Synthesis by Pulsed Laser Ablation
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
79
, pp.
1149
1151
.
You do not currently have access to this content.