In this paper, numerical and experimental studies are presented on melting behavior of a pure metal in the presence of a static magnetic field. When a transverse magnetic field is present and the working fluid is electrically conductive, the fluid motion in the magnetic field results in a force field (Lorentz forces) that will dampen the convective flows. Buoyancy driven flows are the focus of this study to simulate low-gravity conditions. Hartmann (Ha) number, a dimensionless parameter proportional to the strength of the magnetic field, dominates the convection flow suppression. The effects of the magnetic strength on melting rate and on the profile of the solid/melt interface are studied. The experiments are conducted with pure gallium as phase change material inside a rectangular test cell. The solid thickness at its side center position is measured by an ultrasound device and the solid/melt interface profile is captured via reflection florescent-light photography. Temperature measurements and volume expansion/contraction tracking are used to provide further details and to verify the numerical results. Magnetically induced low-gravity environments were extensively studied numerically, where the details of the flow field were obtained. The experimental and numerical results compare very well especially, at larger Hartmann numbers. The results showed that a magnetic filed could be used to simulate key melting characteristics found in actual low-gravity environments. However, under strong magnetic field, numerical simulations revealed a different three-dimensional flow structure in the melt region compared to the actual low-gravity flow fields where the flow circulations are smoothly curved.

1.
Pellis
,
N. R.
, and
North
,
R. M.
, 2004, “
Recent NASA Research Accomplishments Aboard the ISS
,”
Acta Astronaut.
0094-5765,
55
, pp.
589
598
.
2.
Asako
,
Y.
,
Gonçalves
,
E.
,
Faghri
,
M.
, and
Charmchi
,
M.
, 2002, “
Numerical Solution of Melting Processes For Fixed and Unfixed Phase Change Material in the Presence of Magnetic Field—Simulation of Low-Gravity Environment
,”
Numer. Heat Transfer, Part A
1040-7782,
42
, pp.
1
19
.
3.
Gonçalves
,
E.
,
Faghri
,
M.
,
Asako
,
Y.
, and
Charmchi
,
M.
, 2004, “
Numerical Solution of Melting Processes for Unfixed Phase Change Material in the Presence of Electromagnetically Simulated Low Gravity
,”
Numer. Heat Transfer, Part A
1040-7782,
46
, pp.
343
365
.
4.
Gonçalves
,
E.
,
Faghri
,
M.
,
Asako
,
Y.
, and
Charmchi
,
M.
, 2005, “
Numerical Solution of Melting in Side-Heated Rectangular Enclosure Under Electromagnetically Simulated Low Gravity
,”
Numer. Heat Transfer, Part A
1040-7782,
47
, pp.
315
332
.
5.
Veilleux
,
D. L.
,
Gonçalves
,
E.
,
Faghri
,
M.
,
Asako
,
Y.
, and
Charmchi
,
M.
, 2005, “
Phase Change in a Three-Dimensional Rectangular Cavity Under Electromagnetically Simulated Low Gravity: Top Wall Heating with an Unfixed Material
,”
Numer. Heat Transfer, Part A
1040-7782,
48
, pp.
849
678
.
6.
Veilleux
,
D. L.
,
Gonçalves
,
E.
,
Faghri
,
M.
,
Asako
,
Y.
, and
Charmchi
,
M.
, 2005, “
Phase Change in a Three-Dimensional Rectangular Cavity Under Electromagnetically Simulated Low Gravity: Sidewall Heating
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
15
(
7
), pp.
710
739
.
7.
Baumgartl
,
J.
, and
Müller
,
G.
, 1996, “
The Use of Magnetic Fields for Damping the Action of Gravity Fluctuations (g-Jitter) During Crystal Growth Under Microgravity
,”
J. Cryst. Growth
0022-0248,
169
(
3
), pp.
582
586
.
8.
Yeckel
,
A.
, and
Derby
,
J.
, 2004, “
Dynamics of Three-Dimensional Convection in Microgravity Crystal Growth: g-Jitter With Steady Magnetic Fields
,”
J. Cryst. Growth
0022-0248,
263
(
1
), pp.
40
52
.
9.
Ganapathysubramanian
,
B.
, and
Zabaras
,
N.
, 2004, “
Using Magnetic Field Gradients to Control the Directional Solidification of Alloys and the Growth of Single Crystals
,”
J. Cryst. Growth
0022-0248,
270
(
1–2
), pp.
255
272
.
10.
Ramachandran
,
N.
, and
Leslie
,
F. W.
, 2005, “
Using Magnetic Fields to Control Convection During Protein Crystallization—Analysis and Validation Studies
,”
J. Cryst. Growth
0022-0248,
274
(
1–2
), pp.
297
306
.
11.
Li
,
K.
, and
Hu
,
W. R.
, 2001, “
Magnetic Field Design for Floating Zone Crystal Growth
,”
J. Cryst. Growth
0022-0248,
230
(
1–2
), pp.
125
134
.
12.
Colaco
,
M. J.
,
Dulikravich
,
G. S.
, and
Martin
,
T. J.
, 2005, “
Control of Unsteady Solidification Via Optimized Magnetic Fields
,”
Mater. Manuf. Processes
1042-6914,
20
(
3
), pp.
435
458
.
13.
Okada
,
K.
, and
Ozoe
,
H.
, 1992, “
Experimental Heat Transfer Rates of Natural Convection of Molten Gallium Suppressed Under an External Magnetic Field in Either the X, Y, Z Direction
,”
J. Heat Transfer
0022-1481,
114
, pp.
107
114
.
14.
Ozoe
,
H.
, and
Okada
,
K.
, 1989, “
The Effect of the Direction of the External Magnetic Field on the Three-Dimensional Natural Convection in a Cubical Enclosure
,”
Int. J. Heat Mass Transfer
0017-9310,
32
(
10
), pp.
1939
1954
.
15.
Bertrand
,
O.
,
Combeau
,
B. B.
, and
Couturier
,
H.
, 1999, “
Melting Driven by Natural Convection—A Comparison Exercise, Frist Results
,”
Int. J. Therm. Sci.
1290-0729,
38
, pp.
5
26
.
16.
Dulikravich
,
G.
,
Ahuja
,
V.
, and
Lee
,
S.
, 1994, “
Modeling Three-Dimensional Solidification With Magnetic Fields and Reduced Gravity
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
5
), pp.
837
853
.
17.
Dennis
,
B.
, and
Dulikravich
,
G.
, 2002, “
Magnetic Field Suppression of Melt Flow in Crystal Growth
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
269
277
.
18.
Ha
,
M.
,
Lee
,
H.
, and
Seong
,
S.
, 2003, “
Numerical Simulation of Three-Dimensional Flow, Heat Transfer, and Solidification of Steel in Continuous Casting Mold With Electromagnetic Brake
,”
J. Mater. Process. Technol.
0924-0136,
133
, pp.
322
339
.
19.
Harada
,
H.
,
Takeuchi
,
E.
,
Zeze
,
M.
, and
Tanaka
,
H.
, 1998, “
MHD Analysis in Hydromagnetic Casting Process of Clad Steel Slabs
,”
Appl. Math. Model.
0307-904X,
22
, pp.
873
882
.
20.
Botton
,
V.
,
Lehmann
,
P.
, and
Moreau
,
R.
, 2002, “
A New Measurement Method of Solute Diffusivities Based on MHD Damping of Convection in Liquid Metals and Semi-Conductors
,”
Energy Convers. Manage.
0196-8904,
43
, pp.
409
416
.
21.
Campbell
,
T. A.
, and
Koster
,
J. N.
, 1994, “
Visualization of Liquid–Solid Interface Morphologies in Gallium Subject to Natural Convection
,”
J. Cryst. Growth
0022-0248,
140
, pp.
414
425
.
22.
Derebail
,
R.
, and
Oster
,
J. N. K.
, 1998, “
Visualization Study of Melting and Solidification in Convecting Hypoeutectic Ga‐In Alloy
,”
Int. J. Heat Mass Transfer
0017-9310,
41
(
16
), pp.
2537
2548
.
23.
Krautkramer
,
J.
, 1997,
Ultrasonic Testing of Materials
,
Springer
, New York.
24.
Hykes
,
D.
,
Hedrick
,
W.
, and
Starchman
,
D.
, 1985,
Ultrasound Physics and Instrumentation
,
Churchill Livingstone
, New York.
25.
McDonough
,
M.
, and
Faghri
,
A.
, 1993, “
Ultrasonic Measurement of Solid Liquid Interface for the Solidification of Water in Rectangular Enclosure
,”
J. Heat Transfer
0022-1481,
115
, pp.
1075
1078
.
26.
Davidson
,
P.
, 2001,
Introduction to Magnetohydrodynamic
,
Cambridge University Press
, Cambridge, UK.
27.
Cao
,
Y.
, and
Faghri
,
A.
, 1989, “
A Numerical Analysis of Stefan Problems for Generalized Multi-Dimensional Phase-Change Structures Using the Enthalpy Transforming Model
,”
Int. J. Heat Mass Transfer
0017-9310,
32
(
7
), pp.
1289
1298
.
28.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
, New York.
29.
Hayase
,
T.
,
Humphrey
,
J. A. C.
, and
Greif
,
R.
, 1992, “
A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite-Volume Iterative Calculation Procedures
,”
J. Comput. Phys.
0021-9991,
98
, pp.
108
118
.
30.
Charmchi
,
M.
,
Zhang
,
H.
,
Li
,
W.
, and
Faghri
,
M.
, 2004, “
Solidification and Melting of Gallium in the Presence of Magnetic Field—Experimental Simulation of Low Gravity Environment
,”
Proceedings of IMECE 2004
,
Anaheim
, CA, November 14–19.
You do not currently have access to this content.