Pressure drag coefficient and heat transfer are experimentally investigated around a single noncircular cylinder in cross-flow under angle of attack 0deg<α<360deg and Reynolds number 1.5×104<Reeq<4.8×104 based on equivalent diameter of a circular cylinder. The results show that the trend of pressure drag coefficient against the angle of attack has a wavy shape but the wavy trend of the Nusselt number is smoother relative to the drag coefficient behavior. It is found that for lDeq=0.4 and over the whole range of the Reynolds number, the pressure drag coefficient has a minimum value of about CD=0.4 at α=30deg, 180 deg, and 330 deg and a maximum value of about CD=0.9 at α=90deg and 270 deg. The corresponding value of the mean Nusselt number to that of the equivalent circular tube is 1.05<Nu¯camNu¯cir<1.08 at α=90deg and 270 deg as well as 0.87<Nu¯camNu¯cir<0.92 at α=30deg and 180 deg.

1.
Ota
,
T.
,
Aiba
,
S.
,
Tsuruta
,
T.
, and
Kaga
,
M.
, 1983, “
Forced Convection Heat Transfer From an Elliptic Cylinder
,”
Bull. JSME
,
26
(
212
), pp.
262
267
. 0021-3764
2.
Ota
,
T.
, and
Nishiyama
,
H.
, 1984, “
Heat Transfer and Flow Around an Elliptic Cylinder
,”
Int. J. Heat Mass Transfer
0017-9310,
27
(
10
), pp.
1771
1779
.
3.
Ruth
,
E. K.
, 1983, “
Experiments on a Cross Flow Heat Exchanger With Tubes of Lenticular Shape
,”
ASME J. Heat Transfer
0022-1481,
105
, pp.
571
575
.
4.
Merker
,
G. P.
, and
Hanke
,
H.
, 1986, “
Heat Transfer and Pressure Drop Along the Shell-Side of Tube Banks Having Oval-Shaped Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
29
(
12
), pp.
1903
1909
.
5.
Prasad
,
B. V. S. S. S.
,
Tawfek
,
A. A.
, and
Rao
,
V. R. M.
, 1992, “
Heat Transfer From Aerofoils in Cross-Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
19
, pp.
879
890
.
6.
Badr
,
H. M.
,
Dennis
,
S. C. R.
, and
Kocabiyik
,
S.
, 2001, “
Numerical Simulation of the Unsteady Flow Over an Elliptic Cylinder at Different Orientations
,”
Int. J. Numer. Methods Fluids
0271-2091,
37
(
8
), pp.
905
931
.
7.
Matos
,
R. S.
,
Laursen
,
T. A.
,
Vargas
,
J. V. C.
, and
Bejan
,
A.
, 2004, “
Three-Dimensional Optimization of Staggered Finned Circular and Elliptic Tubes in Forced Convection
,”
Int. J. Therm. Sci.
1290-0729,
43
, pp.
477
487
.
8.
Li
,
Zhihua
,
Davidson
,
J. H.
, and
Mantell
,
S. C.
, 2004, “
Heat Transfer Enhancement Using Shaped Polymer Tubes: Fin Analysis
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
211
218
.
9.
Bouris
,
D.
,
Konstantinidis
,
E.
,
Balabani
,
S.
,
Castiglia
,
D.
, and
Bergeles
,
G.
, 2005, “
Design of a Novel, Intensified Heat Exchanger for Reduced Fouling Rates
,”
Int. J. Heat Mass Transfer
,
48
, pp.
3817
3832
. 0017-9310
10.
Moharana
,
M.
, and
Das
,
P.
, 2008, “
Heat Conduction Through Heat Exchanger Tubes of Noncircular Cross Section
,”
ASME J. Heat Transfer
0022-1481,
130
(
1
), p.
011301
.
11.
Ozisik
,
N. M.
, 1985,
Heat Transfer
,
McGraw-Hill
,
New York
.
12.
Quarmby
,
A.
, and
Al-Fakhri
,
A. A. M.
, 1980, “
Effect of Finite Length on Forced Convection Heat Transfer From Cylinders
,”
Int. J. Heat Mass Transfer
,
23
, pp.
463
469
. 0017-9310
13.
White
,
F. M.
, 2005,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.