The effect of surface roughness on pool boiling heat transfer is experimentally explored over a wide range of roughness values in water and Fluorinert FC-77, two fluids with different thermal properties and wetting characteristics. The test surfaces ranged from a polished surface (Ra between 0.027μm and 0.038μm) to electrical discharge machined (EDM) surfaces with a roughness (Ra) ranging from 1.08μm to 10.0μm. Different trends were observed in the heat transfer coefficient with respect to the surface roughness between the two fluids on the same set of surfaces. For FC-77, the heat transfer coefficient was found to continually increase with increasing roughness. For water, on the other hand, EDM surfaces of intermediate roughness displayed similar heat transfer coefficients that were higher than for the polished surface, while the roughest surface showed the highest heat transfer coefficients. The heat transfer coefficients were more strongly influenced by surface roughness with FC-77 than with water. For FC-77, the roughest surface produced 210% higher heat transfer coefficients than the polished surface while for water, a more modest 100% enhancement was measured between the same set of surfaces. Although the results highlight the inadequacy of characterizing nucleate pool boiling data using Ra, the observed effect of roughness was correlated using hRam as has been done in several prior studies. The experimental results were compared with predictions from several widely used correlations in the literature.

1.
Jakob
,
M.
, 1936, “
Heat Transfer in Evaporation and Condensation—I
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
58
, pp.
643
660
.
2.
Westwater
,
J. W.
, 1958, “
Boiling Heat Transfer
,”
Am. Sci.
0003-0996,
47
, pp.
427
446
.
3.
Clark
,
H. B.
,
Strenge
,
P. S.
, and
Westwater
,
J. W.
, 1959, “
Active Sites for Nucleate Boiling
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
55
(
29
), pp.
103
110
.
4.
Bankoff
,
S. G.
, 1958, “
Ebullition From Solid Surfaces in the Absence of a Pre-Existing Gaseous Phase
,”
Trans. ASME
0097-6822,
79
, pp.
735
740
.
5.
Bankoff
,
S. G.
, 1958, “
Entrapment of Gas in the Spreading of a Liquid Over a Rough Surface
,”
AIChE J.
0001-1541,
4
(
1
), pp.
24
26
.
6.
Griffith
,
P.
, and
Wallis
,
J. D.
, 1960, “
The Role of Surface Conditions in Nucleate Boiling
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
56
(
30
), pp.
49
63
.
7.
Hsu
,
Y. Y.
, 1962, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
0022-1481,
84
, pp.
207
216
.
8.
Corty
,
C.
, and
Foust
,
A. S.
, 1955, “
Surface Variables in Nucleate Boiling
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
51
(
17
), pp.
1
12
.
9.
Kurihara
,
H. M.
, and
Myers
,
J. E.
, 1960, “
The Effects of Superheat and Surface Roughness on Boiling Coefficients
,”
AIChE J.
0001-1541,
6
(
1
), pp.
83
91
.
10.
Hsu
,
S. T.
, and
Schmidt
,
F. W.
, 1961, “
Measured Variations in Local Surface Temperatures in Pool Boiling of Water
,”
ASME J. Heat Transfer
0022-1481,
83
, pp.
254
260
.
11.
Marto
,
P. J.
, and
Rohsenow
,
W. M.
, 1966, “
Effects of Surface Conditions on Nucleate Pool Boiling of Sodium
,”
ASME J. Heat Transfer
0022-1481,
88
, pp.
196
204
.
12.
Berenson
,
P. J.
, 1962, “
Experiments on Pool-Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
5
, pp.
985
999
.
13.
Webb
,
R. L.
, 1981, “
The Evolution of Enhanced Surface Geometries for Nucleate Boiling
,”
Heat Transfer Eng.
0145-7632,
2
, pp.
46
69
.
14.
Webb
,
R. L.
, 2004, “
Odyssey of the Enhanced Boiling Surface
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
1051
1059
.
15.
Bier
,
K.
,
Gorenflo
,
D.
,
Salam
,
M.
, and
Tanes
,
Y.
, 1978, “
Pool Boiling Heat Transfer and Size of Active Nucleation Centers for Horizontal Plates With Different Surface Roughness
,”
Proceedings of the Sixth International Heat Transfer Conference
, Toronto, Canada, Vol.
1
, pp.
151
156
.
16.
Chowdhury
,
S. K. R.
, and
Winterton
,
R. H. S.
, 1985, “
Surface Effects in Pool Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
10
), pp.
1881
1889
.
17.
Vachon
,
R. I.
,
Tanger
,
G. E.
,
Davis
,
D. L.
, and
Nix
,
G. H.
, 1968, “
Pool Boiling on Polished and Chemically Etched Stainless-Steel Surfaces
,”
ASME J. Heat Transfer
0022-1481,
80
, pp.
231
238
.
18.
Kravchenko
,
V. A.
, and
Ostrovskiy
,
Yu. N.
, 1979, “
Effect of Surface Roughness on Boiling Heat Transfer to Light Hydrocarbons and Nitrogen
,”
Heat Transfer-Sov. Res.
0440-5749,
11
(
1
), pp.
133
137
.
19.
Grigoriev
,
V. A.
,
Pavlov
,
Yu. M.
, and
Ametistov
,
Ye. V.
, 1974, “
An Investigation of Nucleate Boiling Heat Transfer of Helium
,”
Proceedings of the Fifth International Heat Transfer Conference
, Tokyo, Japan, pp.
45
49
.
20.
Yang
,
S. R.
, and
Kim
,
R. H.
, 1988, “
A Mathematical Model of the Pool Boiling Nucleation Site Density in Terms of the Surface Characteristics
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
6
), pp.
1127
1135
.
21.
Cornwell
,
K.
, 1977, “
Naturally Formed Boiling Site Cavities
,”
Lett. Heat Mass Transfer
0094-4548,
4
, pp.
63
72
.
22.
Shoukri
,
M.
, and
Judd
,
R. L.
, 1975, “
Nucleation Site Activation in Saturated Boiling
,”
ASME J. Heat Transfer
0022-1481,
97
, pp.
93
98
.
23.
Wang
,
C. H.
, and
Dhir
,
V. K.
, 1993, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
659
669
.
24.
Wang
,
C. H.
, and
Dhir
,
V. K.
, 1993, “
On the Gas Entrapment and Nucleation Site Density During Pool Boiling of Saturated Water
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
670
679
.
25.
Qi
,
Y.
,
Klausner
,
J. F.
, and
Mei
,
R.
, 2004, “
Role of Surface Structure in Heterogeneous Nucleation
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3097
3107
.
26.
Luke
,
A.
, 2004, “
Active and Potential Bubble Nucleation Sites on Different Structured Heated Surfaces
,”
Chem. Eng. Res. Des.
0263-8762,
82
, pp.
462
470
.
27.
Luke
,
A.
, 2006, “
Preparation, Measurement and Analysis of Microstructure of Evaporator Surfaces
,”
Int. J. Therm. Sci.
1290-0729,
45
, pp.
237
256
.
28.
Stephan
,
K.
, 1963, “
Mechanismus und Modellgesetz des Wärmeübergangs bei der Blasenverdampfung
,”
Chem.-Ing.-Tech.
0009-286X,
35
(
11
), pp.
775
784
.
29.
Danilova
,
G. N.
, and
Bel’skii
,
V. K.
, 1965, “
Study of Heat Transfer on Boiling of Freon 113 and Freon 12 on Pipes of Differing Roughness
,”
Kholodil’naia Tekhnika
,
4
, pp.
24
28
.
30.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Ohta
,
H.
, and
Hidaka
,
S.
, 1982, “
Effect of the Surface Roughness on the Nucleate Boiling Heat Transfer Over the Wide Range of Pressure
,”
Proceedings of the Seventh International Heat Transfer Conference
, München, Germany, Vol.
4
, pp.
61
66
.
31.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Ohta
,
H.
, and
Hidaka
,
S.
, 1982, “
Effects of System Pressure and Surface Roughness on Nucleate Boiling Heat Transfer
,”
Memoirs of the Faculty of Engineering, Kyushu University
,
42
(
2
), pp.
95
111
.
32.
Cooper
,
M. G.
, 1984, “
Saturation Nucleate Pool Boiling—A Simple Correlation
,”
First UK National Conference on Heat Transfer
, University of Leeds, pp.
785
793
.
33.
Cooper
,
M. G.
, 1984, “
Heat Flow Rates in Saturated Nucleate Pool Boiling—A Wide-Ranging Examination Using Reduced Properties
,”
Adv. Heat Transfer
0065-2717,
16
, pp.
157
239
.
34.
Gorenflo
,
D.
, 1993, “
Pool Boiling
,”
VDI Heat Atlas
,
VDI Verlag
,
Düsseldorf
.
35.
3M Corporation
, 1986, Fluorinert Liquids Product Manual, Industrial Chemical Products Division.
36.
3M Corporation
, 2000, Fluorinert Electronic Liquid FC-77 Product Information No. 98-0212-2309-8 (HB), Specialty Materials Division.
37.
Raben
,
I. A.
,
Beaubouef
,
R. T.
, and
Commerford
,
G. E.
, 1965, “
A Study of Heat Transfer in Nucleate Pool Boiling of Water at Low Pressure
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
61
(
57
), pp.
249
257
.
38.
Anderson
,
T. M.
, and
Mudawar
,
I.
, 1989, “
Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
752
759
.
39.
Baldwin
,
C. S.
,
Bhavnani
,
S. H.
, and
Jaeger
,
R. C.
, 2000, “
Toward Optimizing Enhanced Surfaces for Passive Immersion Cooled Heat Sinks
,”
IEEE Trans. Compon. Packag. Tech.
,
23
(
1
), pp.
70
79
. 1521-3331
40.
Parker
,
J. L.
, and
El-Genk
,
M. S.
, 2005, “
Enhanced Saturation and Subcooled Boiling of FC-72 Dielectric Liquid
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3736
3752
.
41.
Bhavnani
,
S. H.
,
Tsai
,
C. -P.
,
Jaegar
,
R. C.
, and
Eison
,
D. L.
, 1993, “
An Integral Heat Sink for Cooling Microelectronic Components
,”
ASME J. Electron. Packag.
1043-7398,
115
, pp.
284
291
.
42.
Bergles
,
A. E.
, and
Chyu
,
M. C.
, 1982, “
Characteristics of Nucleate Pool Boiling From Porous Metallic Coatings
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
279
285
.
43.
Hatton
,
A. P.
, and
Hall
,
I. S.
, 1966, “
Photographic Study of Boiling on Prepared Surfaces
,”
Proceedings of the Third International Heat Transfer Conference
, Chicago, IL, Vol.
4
, pp.
24
37
.
44.
Fedders
,
H.
, 1971, “
Messung des Wärmeüberganges beim Blasensieden von Wasser an metallischen Rohren
,” Kernforschungsanlage Jülich Report No. Jül-740-RB.
45.
Ribatski
,
G.
, and
Jabardo
,
J. M. S.
, 2003, “
Experimental Study of Nucleate Boiling of Halocarbon Refrigerants on Cylindrical Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4439
4451
.
46.
Chun
,
M. -H.
, and
Kang
,
M. -G.
, 1998, “
Effects of Heat Exchanger Tube Parameters on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
120
(
2
), pp.
468
476
.
47.
Vachon
,
R. I.
,
Tanger
,
G. E.
,
Nix
,
G. H.
, and
Davis
,
D. L.
, 1965, “
Pool Boiling of Water From Mechanically Polished and Chemically Etched Stainless Steel Surfaces
,” Auburn Research Foundation Report No. IV.
48.
Vachon
,
R. I.
,
Tanger
,
G. E.
,
Nix
,
G. H.
, and
Goree
,
L. H.
, 1966, “
Pool Boiling of Water on 304 Stainless Steel Etched With Hydrochloric Acid
,” Auburn Research Foundation Report No. VI.
49.
Kurihara
,
H. M.
, 1956, “
Fundamental Factors Affecting Boiling Coefficients
,” Ph.D. thesis, Purdue University, Lafayette, IN.
50.
Forster
,
H. K.
, and
Zuber
,
N.
, 1955, “
Dynamics of Vapor Bubbles and Boiling Heat Transfer
,”
AIChE J.
0001-1541,
1
(
4
), pp.
531
535
.
51.
Rohsenow
,
W. M.
, 1952, “
A Method of Correlating Heat-Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
0097-6822,
74
, pp.
969
976
.
52.
Vachon
,
R. I.
,
Nix
,
G. H.
, and
Tanger
,
G. E.
, 1968, “
Evaluation of Constants for the Rohsenow Pool-Boiling Correlation
,”
ASME J. Heat Transfer
0022-1481,
90
, pp.
239
247
.
53.
Pioro
,
I. L.
, 1999, “
Experimental Evaluation of Constants for the Rohsenow Pool Boiling Correlation
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
2003
2013
.
54.
Tien
,
C. L.
, 1962, “
A Hydrodynamic Model for Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
5
, pp.
533
540
.
55.
Lienhard
,
J. H.
, 1963, “
A Semi-Rational Nucleate Boiling Heat Flux Correlation
,”
Int. J. Heat Mass Transfer
0017-9310,
6
, pp.
215
219
.
56.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
, 1969, “
A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics
,”
ASME J. Heat Transfer
0022-1481,
91
, pp.
245
250
.
57.
Danilova
,
G. N.
, 1970, “
Correlation of Boiling Heat Transfer Data for Freons
,”
Heat Transfer-Sov. Res.
0440-5749,
2
(
2
), pp.
73
78
.
58.
Leiner
,
W.
, 1994, “
Heat Transfer by Nucleate Pool Boiling—General Correlation Based on Thermodynamic Similarity
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
5
), pp.
763
769
.
59.
Cooper
,
M. G.
, 1982, “
Correlations for Nucleate Boiling—Formulation Using Reduced Properties
,”
PCH, PhysicoChem. Hydrodyn.
0191-9059,
3
(
2
), pp.
89
111
.
You do not currently have access to this content.