The phenomena of Coulomb explosion require the consideration of special relativity due to the involvement of high energy electrons or ions. It is known that laser ablation processes at high laser intensities may lead to the Coulomb explosion, and their released energy is in the regime of kEV to MeV. In contrast to conventional molecular dynamics (MD) simulations, we adopt the three-dimensional relativistic molecular dynamics (RMD) method to consider the effects of special relativity in the conventional MD simulation for charged particles in strong electromagnetic fields. Furthermore, we develop a Coulomb force scheme, combined with the Lennard-Jones potential, to calculate interactions between charged particles, and adopt a Verlet list scheme to compute the interactions between each particle. The energy transfer from the laser pulses to the solid surface is not directly simulated. Instead, we directly assign ion charges to the surface atoms that are illuminated by the laser. By introducing the Coulomb potential into the Lennard-Jones potential, we are able to mimic the laser energy being dumped into the xenon (Xe) solid, and track the motion of each Xe atom. In other words, the laser intensity is simulated by using the repulsive forces from the Coulomb potential. Both nonrelativistic and relativistic simulations are performed, and the RMD method provides more realistic results, in particular, when high-intensity laser is used. In addition, it is found that the damage depth does not increase with repeated laser ablation when the pulse frequency is comparable to the duration of the pulse. Furthermore, we report the time evolution of energy propagation in space in the laser ablation process. The temporal-spatial distribution of energy indirectly indicates the temperature evolution on the surface of the Xe solid under intense laser illumination.

1.
Kumarappan
,
V.
,
Krishnamurthy
,
M.
, and
Mathur
,
D.
, 2001, “
Asymmetric High-Energy Ion Emission From Argon Clusters in Intense Laser Fields
,”
Phys. Rev. Lett.
0031-9007,
87
, p.
085005
.
2.
Kumarappan
,
V.
,
Krishnamurthy
,
M.
, and
Mathur
,
D.
, 2003, “
Explosions of Water Clusters in Intense Laser Fields
,”
Phys. Rev. A
1050-2947,
67
, p.
043204
.
3.
Fleischer
,
R. L.
,
Price
,
P. B.
, and
Walker
,
R. M.
, 1965, “
Ion Explosion Spike Mechanism for Formation of Charged-Particle Tracks in Solids
,”
J. Appl. Phys.
0021-8979,
36
, pp.
3645
3652
.
4.
Trautmann
,
C.
,
Klaumunzer
,
S.
, and
Trinkaus
,
H.
, 2000, “
Effect of Stress on Track Formation in Amorphous Iron Boron Alloy: Ion Tracks as Elastic Inclusions
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
3648
3651
.
5.
Lesueur
,
D.
, and
Dunlop
,
A.
, 1993, “
Damage Creation Via Electronic Excitations in Metallic Targets Part II: A Theoretical Model
,”
Radiat. Eff. Defects Solids
1042-0150,
126
, pp.
163
172
.
6.
Papaleo
,
R. M.
,
de Oliveira
,
L. D.
,
Farenzena
,
L. S.
,
de Araujo
,
M. A.
, and
Livi
,
R. P.
, 2000, “
Probing Thermomechanical Behavior of Polymers at the Nanometer Scale With Single-Ion Bombardment and Scanning Force Microscopy
,”
Phys. Rev. B
0163-1829,
62
, pp.
11273
11276
.
7.
Johnson
,
R. E.
, and
Brown
,
W. L.
, 1982, “
Electronic Mechanisms for Sputtering of Condensed-Gas Solids by Energetic Ions
,”
Nucl. Instrum. Methods Phys. Res.
0167-5087,
198
, pp.
103
118
.
8.
Pande
,
C. S.
, and
Suenaga
,
M.
, 1976, “
A Model of Flux Pinning by Grain Boundaries in Type-II Superconductors
,”
Appl. Phys. Lett.
0003-6951,
29
, pp.
443
444
.
9.
Schenkel
,
T.
,
Hamza
,
A. V.
,
Barnes
,
A. V.
, and
Schneider
,
D. H.
, 1998, “
Ablation of GaAs by Intense, Ultrafast Electronic Excitation From Highly Charged Ions
,”
Phys. Rev. Lett.
0031-9007,
81
, pp.
2590
2593
.
10.
Jungreuthmayer
,
C.
,
Geissler
,
M.
,
Zanghellini
,
J.
, and
Brabec
,
T.
, 2004, “
Microscopic Analysis of Large-Cluster Explosion in Intense Laser Fields
,”
Phys. Rev. Lett.
0031-9007,
92
, p.
133401
.
11.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perel’man
,
T. L.
, 1974, “
Electron Emission From Metal Surfaces Exposed to Ultrashort Laser Pulses
,”
Sov. Phys. JETP
0038-5646,
39
, pp.
375
377
.
12.
Kotake
,
S.
, and
Kuroki
,
M.
, 1993, “
Molecular Dynamics Study of Solid Melting and Vaporization by Laser Irradiation
,”
Int. J. Heat Mass Transfer
,
36
, pp.
2061
2067
. 0017-9310
13.
Girifalco
,
L. A.
, and
Weizer
,
V. G.
, 1959, “
Application of Morse Potential Function to Cubic Metals
,”
Phys. Rev.
0031-899X,
114
, pp.
687
690
.
14.
Ohmura
,
E.
,
Fukumoto
,
I.
, and
Miyamoto
,
I.
, 1996, “
Molecular Dynamics Simulation of Ablation Process With Ultrashort-Pulse Laser
,”
RIKEN Rev.
0919-3405,
32
, pp.
19
22
.
15.
Etcheverry
,
J. I.
, and
Mesaros
,
M.
, 1999, “
Molecular Dynamics Simulation of the Production of Acoustic Waves by Pulsed Laser Irradiation
,”
Phys. Rev. B
0163-1829,
60
, pp.
9430
9434
.
16.
Wang
,
X.
, and
Xu
,
X.
, 2002, “
“Molecular Dynamics Simulation of Heat Transfer and Phase Change During Laser Material Interaction
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
265
274
.
17.
Wang
,
X.
, and
Xu
,
X.
, 2003, “
Molecular Dynamics Simulation of Thermal and Thermomechanical Phenomena in Picosecond Laser Material Interaction
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
45
53
.
18.
Ditmire
,
T.
,
Tisch
,
J. W. G.
,
Springate
,
E.
,
Mason
,
M. B.
,
Hay
,
N.
,
Smith
,
R. A.
,
Marangos
,
J.
, and
Hutchinson
,
M. H. R.
, 1997, “
High-Energy Ions Produced in Explosions of Superheated Atomic Clusters
,”
Nature (London)
0028-0836,
386
, pp.
54
56
.
19.
Quaglia
,
L.
, and
Cornaggia
,
C.
, 2000, “
Experimental Evidence of Excited Multicharged Atomic Fragments Coming From Laser-Induced Coulomb Explosion of Molecules
,”
Phys. Rev. Lett.
0031-9007,
84
, pp.
4565
4568
.
20.
Rabinovich
,
V. A.
,
Vasserman
,
A. A.
,
Nedostup
,
V. I.
, and
Veksler
,
L. S.
, 1988,
Thermophysical Properties of Neon, Argon, Krypton and Xenon
,
Hemisphere
,
Washington, DC
.
21.
Lennard-Jones
,
J. E.
, 1931, “
Cohesion
,”
Proc. Phys. Soc. London
0370-1328,
43
, pp.
461
482
.
22.
Codling
,
K.
, and
Frasinski
,
L. J.
, 1993, “
Dissociative Ionization of Small Molecules in Intense Laser Fields
,”
J. Phys. B
0953-4075,
26
, pp.
783
809
.
23.
Stapelfeldt
,
H.
,
Constant
,
E.
, and
Corkum
,
P. B.
, 1995, “
Wave Packet Structure and Dynamics Measured by Coulomb Explosion
,”
Phys. Rev. Lett.
0031-9007,
74
, pp.
3780
3783
.
24.
Stapelfeldt
,
H.
,
Sakai
,
H.
,
Constant
,
E.
, and
Corkum
,
P. B.
, 1997, “
Formation and Measurement of Molecular Quantum Picostructures
,”
Phys. Rev. A
1050-2947,
55
, pp.
R3319
R3322
.
25.
Watson
,
C.
, and
Tombrello
,
T.
, 1985, “
A Modified Lattice Potential Model of Electronically Mediated Sputtering
,”
Radiat. Eff. Defects Solids
1042-0150,
89
, pp.
263
283
.
26.
Last
,
I.
, and
Jortner
,
J.
, 1999, “
Quasiresonance Ionization of Large Multicharged Clusters in a Strong Laser Field
,”
Phys. Rev. A
1050-2947,
60
, pp.
2215
2221
.
27.
Last
,
I.
, and
Jortner
,
J.
, 2000, “
Dynamics of the Coulomb Explosion of Large Clusters in a Strong Laser Field
,”
Phys. Rev. A
1050-2947,
62
, p.
013201
.
28.
Brewczyk
,
M.
,
Clark
,
C. W.
,
Lewenstein
,
M.
, and
Rzazewski
,
K.
, 1998, “
Stepwise Explosion of Atomic Clusters Induced by a Strong Laser Field
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
1857
1860
.
29.
Krainov
,
V. P.
, and
Roshchupin
,
A. S.
, 2001, “
Dynamics of Coulomb Explosion of Large Xe Clusters Irradiated by a Super-Intense Ultra-Short Laser Pulse
,”
J. Phys. B
0953-4075,
34
, pp.
L297
L303
.
30.
Okino
,
T.
,
Yamanouchi
,
K.
,
Shimizu
,
T.
,
Furusawa
,
K.
,
Hasegawa
,
H.
,
Nabekawa
,
Y.
and
Midorikawa
,
K.
, 2006, “
Attosecond Molecular Coulomb Explosion
,”
Chem. Phys. Lett.
0009-2614,
432
(
1–3
), pp.
68
73
.
You do not currently have access to this content.