Recent work on boiling of water and condensation of steam in single and parallel microchannels is reviewed in this paper. It is found that the amplitude and frequency of fluctuations of temperature and pressure during the unstable flow-boiling mode depend greatly on the inlet/outlet configurations and the exit vapor quality. By fabricating an inlet restriction on each microchannel or the installation of a throttling valve upstream of the test section, reversed flow of vapor bubbles can be suppressed resulting in a stable flow-boiling mode. Boiling heat transfer coefficient and pressure drop in microchannels under stable flow-boiling conditions are obtained. These data at high vapor qualities are found to be substantially different from the correlations obtained for flow-boiling in macrochannels. Microbubble emission boiling phenomena, which can defer the arrival of critical heat flux, exist in a partially heated Pyrex glass microchannel at sufficiently high heat flux and high inlet subcooling conditions. For condensation in a microchannel, transition from annular flow to slug/bubbly flow is investigated. The occurrence of the injection flow is owing to the instability of the liquid/vapor interface. The location, at which the injection flow occurs, depends on the mass flux and the cooling rate of steam. Increase in steam mass flux, decrease in cooling rate, and microchannel diameter tend to enhance the instability of the condensate film on the wall, resulting in the occurrence of injection flow further downstream at increasingly high frequency. The pressure drop in the condensing flow increases with the increase in mass flux and quality or with decreasing microchannel diameter. The existing correlations for pressure drop and heat transfer of condensing flow in macrochannels overestimate the experimental data in microchannels.

1.
Cheng
,
P.
, and
Wu
,
H. Y.
, 2006, “
Mesoscale and Microscale Phase-Change Heat Transfer
,”
Adv. Heat Transfer
0065-2717,
39
, pp.
461
563
.
2.
Kandlikar
,
S. G.
, 2002, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
389
407
.
3.
Thome
,
J. R.
, 2004, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
128
139
.
4.
Cheng
,
P.
,
Wu
,
H. Y.
, and
Hong
,
F. J.
, 2007, “
Phase-Change Heat Transfer in Microsystems
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
101
107
.
5.
Kandlikar
,
S. G.
,
Steinke
,
M. E.
,
Tian
,
S.
, and
Campbell
,
L. A.
, 2001, “
High Speed Photographic Observation of Flow Boiling of Water in Parallel Minichannels
,”
ASME National Heat Transfer Conference
, Los Angeles, CA, Jun. 10–12.
6.
Brutin
,
D.
,
Topin
,
F.
, and
Tadrist
,
L.
, 2003, “
Experimental Study of Unsteady Convective Boiling in Heated Minichannels
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2957
2965
. 0017-9310
7.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
Visualization and Measurements of Periodic Boiling in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2603
2614
.
8.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2004, “
Boiling Instability in Parallel Silicon Microchannels at Different Heat flux
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3631
3641
.
9.
Qu
,
W. L.
, and
Mudawar
,
I.
, 2003, “
Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2737
2753
.
10.
Jacobi
,
A. M.
, and
Thome
,
J. R.
, 2002, “
Heat Transfer Model for Evaporation of Elongated Bubble Flow in Microchannels
,”
ASME J. Heat Transfer
0022-1481,
124
(
6
), pp.
1131
1136
.
11.
Qu
,
W. L.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—II. Annular to-Phase Flow Model
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
15
), pp.
2773
2784
.
12.
Chen
,
Y. P.
, and
Cheng
,
P.
, 2005, “
Condensation of Steam in a Silicon Microchannels
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
, pp.
175
183
.
13.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2005, “
Condensation Flow Patterns in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2186
2197
.
14.
Wang
,
G. D.
,
Cheng
,
P.
, and
Wu
,
H. Y.
, 2007, “
Unstable and Stable Flow Boiling in Parallel Microchannels and in a Single Microchannel
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4297
4310
. 0017-9310
15.
Wang
,
G. D.
,
Cheng
,
P.
, and
Bergles
,
A. E.
, 2008, “
Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2267
2281
. 0017-9310
16.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
, 2005, “
Explosive Boiling of Water in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
0301-9322,
31
, pp.
371
392
.
17.
Kandlikar
,
S. G.
,
Willistern
,
D. A.
, and
Borrelli
,
J.
, 2005 “
Experimental Evaluation of Pressure Drop Elements and Fabricated Nucleation Sites for Stabilizing Flow Boiling in Minichannels and Microchannels
,” ASME Paper No. ICMM2005–75197.
18.
Kosar
,
A.
,
Kuo
,
C. J.
, and
Peles
,
Y.
, 2006, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
251
260
.
19.
Sobierska
,
E.
,
Kulenovic
,
R.
, and
Mertz
,
R.
, 2007, “
Heat Transfer Mechanism and Flow Pattern During Flow Boiling of Water in a Vertical Narrow Channel—Experimental Results
,”
Int. J. Therm. Sci.
,
46
, pp.
1172
1181
. 1290-0729
20.
Agostini
B.
,
Thome
J. R.
,
Fabbri
M.
,
Michel
B.
,
Calmi
D.
,
Kloter
U.
, 2008, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels—Part I: Heat Transfer Characteristics of Refrigerant R236fa
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
5400
5414
.
21.
Agostini
B.
,
Thome
J. R.
,
Fabbri
M.
,
Michel
B.
,
Calmi
D.
,
Kloter
U.
, 2008, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels–Part II: Heat Transfer Characteristics of Refrigerant R245fa
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
5415
5425
.
22.
Harirchian
,
T.
, and
Garimella
,
S. V.
, 2008, “
Microchannel Size Effects on Local Flow Boiling Heat Transfer to a Dielectric Fluid
,”
Int. J. Heat Mass Transfer
,
51
, pp.
3724
3735
. 0017-9310
23.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
, 2008, “
Refrigerant Flow Boiling Heat Transfer in Parallel Microchannels as a Function of Local Vapor Quality
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4775
4787
.
24.
Thome
,
J. R.
,
Dupont
,
V.
, and
Jacobi
,
A. M.
, 2004, “
Heat Transfer Model for Evaporation in Microchannels. Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
14–16
), pp.
3375
3385
.
25.
Dupont
,
V.
,
Thome
,
J. R.
, and
Jacobi
,
A. M.
, 2004, “
Heat Transfer Model for Evaporation in Microchannels. Part II: Comparison With the Database
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
14–16
), pp.
3387
3401
.
26.
Revellin
,
R.
, and
Thome
,
J. R.
, 2007, “
A New Type of Diabatic Flow Pattern Map for Boiling Heat Transfer in Microchannels
,”
J. Micromech. Microeng.
0960-1317,
17
(
4
), pp.
788
796
.
27.
Wojtan
,
L.
,
Revellin
,
R.
, and
Thome
,
J. R.
, 2006, “
Investigation of Saturated Critical Heat Flux in a Single, Uniformly Heated Microchannel
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
765
774
.
28.
Wang
,
G. D.
, and
Cheng
,
P.
, 2009, “
Subcooled Flow Boiling and Microbubble Emission Boiling Phenomena in a Partially Heated Microchannel
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
79
91
.
29.
Quan
,
X. J.
,
Cheng
,
P.
, and
Wu
,
H. Y.
, 2008, “
Transition from Annular Flow to Plug/Slug Flow in Condensation of Steam in Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
707
716
. 0017-9310
30.
Quan
,
X. J.
,
Cheng
,
P.
, 2008, “
An Experimental Investigation on Pressure Drop of Steam Condensing in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
54
58
.
31.
Quan
,
X. J.
,
Cheng
,
P.
, 2008, “
Condensation Heat Transfer Coefficients in Trapezoidal Silicon Microchannels
,” unpublished.
32.
Hwang
,
Y. W.
, and
Kim
,
M. S.
, 2006, “
The Pressure Drop in Microtubes and the Correlation Development
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1804
1812
. 0017-9310
33.
Nino
,
V. G.
, and
Jassim
,
E. W.
, 2006, “
Flow-Regime-Based Model for Pressure Drop Predictions in Microchannels
,”
HVAC&R Res.
1078-9669,
12
(
1
), pp.
17
33
.
34.
Wang
,
H. S.
, and
Rose
,
J. W.
, 2005, “
A Theory of Film Condensation in Horizontal Noncircular Section Microchannels
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1096
1105
.
35.
Wang
,
H. S.
, and
Rose
,
J. W.
, 2006, “
Film Condensation in Horizontal Microchannels: Effect of Channel Shape
,”
Int. J. Therm. Sci.
,
45
, pp.
1205
1212
. 1290-0729
36.
Shin
,
J. S.
, and
Kim
,
M. H.
, 2005, “
An Experimental Study of Flow Condensation Heat Transfer Inside Circular and Rectangular Mini-Channels
,”
Heat Transfer Eng.
0145-7632,
26
(
3
), pp.
36
44
.
37.
Bandhauer
,
T. M.
,
Agarwal
,
A.
, and
Garimella
,
S.
, 2006, “
Measurement and Modeling of Condensation Heat Transfer Coefficients in Circular Microchannels
,”
ASME J. Heat Transfer
0022-1481,
128
(
10
), pp.
1050
1059
.
38.
Agarwal
,
A.
,
Bandhauer
,
T. A.
, and
Garimella
,
S.
, 2007, “
Heat Transfer Model for Condensation in Non-Circular Microchannels
,” ASME Paper No. ICNMM2007-30223.
39.
Jassim
,
E. W.
, and
Newell
,
T. A.
, 2006, “
Prediction of Two-Phase Pressure Drop and Void Fraction in Microchannels Using Probabilistic Flow Regime Mapping
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2446
2457
.
40.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
, and
Zilio
,
C.
, 2005, “
Condensation Heat Transfer and Pressure Gradient Inside Multiport Minichannels
,”
Heat Transfer Eng.
0145-7632,
26
(
3
), pp.
45
55
.
41.
Mishima
,
K.
, and
Hibiki
,
T.
, 1996, “
Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes
,”
Int. J. Multiphase Flow
0301-9322,
22
(
4
), pp.
703
712
.
42.
Kandlikar
,
S. G.
, 1990, “
A General Correlation for Saturated Two-Phase Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
0022-1481,
112
(
1
), pp.
219
228
.
43.
Wojtan
,
L.
,
Ursenbacher
,
T. U.
, and
Thome
,
J. R.
, 2005, “
Investigation of Flow Boiling in Horizontal Tubes: Part II—Development of a New Heat Transfer Model for Stratified-Wavy, Dryout and Mist Flow Regimes
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2970
2985
.
44.
Agostini
,
B.
, 2002, “
Etude expérimentale de I’ébullition de fluide refrigerant en convection force dans des mini-canaux
,” Ph.D. thesis, Université Joseph Fourier, Grenoble.
45.
Inada
,
S.
,
Miyasaka
,
Y.
,
Izumi
,
Y.
, and
Owase
,
Y.
, 1981, “
Study on Subcooled Pool Boiling: 1st Rep. Effect of Liquid Subcooling on Local Heat Transfer Characteristics
,”
Transaction of JSME
,
47
, pp.
852
861
.
46.
Shoji
,
M.
, and
Yoshihara
,
M.
, 1991, “
Burnout Heat Flux of Water on a Thin Wire
,”
Proceedings of 28th National Heat Transfer Symposium of Japan
, Vol.
27
, pp.
121
123
.
47.
Suzuki
,
K.
, and
Kawada
,
R.
, 2004, “
On Subcooled Flow Boiling With Microbubble Emission in a Horizontal Circular Channel
,”
The First International Symposium on Micro & Nano Technology
, Honolulu, HI, Mar. 14–17.
48.
Suzuki
,
K.
,
Kokubu
,
T.
,
Nakano
,
M.
,
Kawamura
,
H.
,
Ueno
,
I.
,
Shida
,
H.
, and
Ogawa
,
O.
, 2005, “
Enchancement of Heat Transfer in Subcooled Flow Boiling With Microbubble Emission
,”
Exp. Therm. Fluid Sci.
,
29
, pp.
827
832
. 0894-1777
49.
Wang
,
W. W. W.
,
Radcliff
,
T. D.
, and
Christensen
,
R. N.
, 2002, “
A Condensation Heat Transfer Correlation for Millimeter-Scale Tubing With Flow Regime Transition
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
473
485
.
50.
Garimella
,
S.
,
Killion
,
J. D.
, and
Coleman
,
J. W.
, 2002, “
An Experimentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Circular Microchannels
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
205
213
.
51.
Chan
,
S. H.
,
Wang
,
Y. S.
, and
Tan
,
C. C.
, 1994, “
The Effect of Mass Transfer on Kelvin–Helmholtz Instability at the Gas-Liquid Interface of a Sonic Reacting and Non-Reacting Gas Jet Submerged in a Liquid
,”
Int. J. Heat Mass Transfer
,
37
, pp.
1123
1132
. 0017-9310
52.
Shin
,
J. S.
, and
Kim
,
M. H.
, 2004, “
An Experimental Study of Condensation Heat Transfer Inside a Mini-Channel With a New Measurement Technique
,”
Int. J. Multiphase Flow
,
30
, pp.
311
325
. 0301-9322
53.
Friedel
,
L.
, 1979, “
Improved Friction Pressure Drop Correlation for Horizontal and Vertical Two-Phase Pipe Flow
,”
European Two-Phase Flow Group Meeting
, Ispra, Italy, Paper No. 2.
54.
Zhao
,
T. S.
, and
Liao
,
Q.
, 2002, “
Theoretical Analysis of Film Condensation Heat Transfer Inside Vertical Mini Triangular Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2829
284
.
55.
Moser
,
K. W.
,
Webb
,
R. L.
, and
Na
,
B.
, 1998, “
A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes
,”
ASME J. Heat Transfer
0022-1481,
120
(
2
), pp.
410
417
.
56.
Koyama
,
S.
,
Kuwahara
,
K.
,
Nakashita
,
K.
, and
Yamamoto
,
K.
, 2003, “
An Experiment Study on Condensation of Refrigerant R134a in a Multi-Port Extruded Tube
,”
Int. J. Refrig.
0140-7007,
26
(
4
), pp.
425
432
.
57.
Shah
,
M. M.
, 1979, “
A General Correlation for Heat Transfer During Film Condensation in Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
22
(
4
), pp.
547
556
.
58.
Akers
,
W. W.
,
Deans
,
H. A.
, and
Crosser
,
O. K.
, 1959, “
Condensation Heat Transfer Within Horizontal Tubes
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
55
(
29
), pp.
171
176
.
You do not currently have access to this content.