Small scale, thermally driven power sources will require appropriate insulation to achieve sufficiently high thermal conversion efficiencies. This paper presents a micro-insulation design, which was developed for a thermionic microbattery, which converts the decay heat from radioactive isotopes directly to electricity using a vacuum thermionic diode. The insulation concept, which is suitable for any small scale application, separates two planar surfaces with thin, semicircular posts, thus reducing conduction heat transfer and increasing the relative radiation heat transfer. In this case, the surfaces are silicon wafers and the columns are SU-8, a photoresist material. The experimental results indicate that this design is adequate for a practical power source concept, and they are supported by a numerical model for the effective thermal conductivity of the structure. The results show that a typical design of 20columns/cm2 with a 200μm diameter and a 10μm wall thickness has an apparent thermal conductivity on the order of 104W/mK at a pressure of 1 Pa. System models of a thermionic power source indicate that this is sufficiently low to provide practical efficiency.

1.
Hernqvist
,
K. G.
, 1960, “
Thermionic Power Conversion and Its Possibilities in the Nuclear Field
,”
Direct Conversion of Heat to Electricity
,
J.
Kaye
and
J. A.
Welsh
, eds.,
Wiley
,
New York
, Chap. 9.
2.
King
,
D. B.
,
Sadwick
,
L. P.
, and
Wernsman
,
B. R.
, 2001, “
Microminiature Thermionic Converters
,” U.S. Patent No. 6,294,858.
3.
Dunlay
,
J. B.
, 1967, “
The Development of Foil Thermal Insulation of High Temperature Heat Sources
,”
Proceedings of the Second Intersociety Energy Conversion Engineering Conference
,
ASME
,
New York
.
4.
Paquin
,
M. L.
, 1969, “
The MULTI-FOIL Thermal Insulation Development Program
,”
Proceedings of the Fourth Intersociety Energy Conversion Engineering Conference
,
ASCE
,
New York
.
5.
Kreith
,
F.
, 2000,
The CRC Handbook of Thermal Engineering
,
CRC
,
Boca Raton, FL
, pp.
4
194
.
6.
Marshall
,
A.
,
Kravitz
,
S.
,
Tigges
,
C.
, and
Vawter
,
G.
, 2004, “
Methods for Fabricating a Micro Heat Barrier
,” U.S. Patent No. 6673254.
7.
Lorenz
,
H.
,
Despont
,
M.
,
Fahrni
,
N.
,
LaBianca
,
N.
,
Prenaud
,
P.
, and
Vettiger
,
P.
, 1997, “
SU-8: A Low-Cost Negative Resist for MEMS
,”
J. Micromech. Microeng.
0960-1317,
7
, pp.
121
124
.
8.
Chang
,
S.
,
Warren
,
J.
,
Hong
,
D.
, and
Chiang
,
F.
, 2002, “
Testing Mechanical Properties of EPON SU-8 With SIEM
,”
2002 SEM Annual Conference and Exposition on Experimental and Applied Mechanics
, Milwaukee, WI, p.
2002
.
9.
Nordström
,
M.
,
Johansson
,
A.
,
Nogueron
,
S.
,
Clausen
,
B.
,
Calleja
,
M.
, and
Boisen
,
A.
, 2005, “
Investigation of the Bond Strength Between the Photo-Sensitive Polymer SU-8 and Gold
,”
Microelectron. Eng.
0167-9317,
78–79
, pp.
152
157
.
10.
Pan
,
C. -T.
,
Yang
,
H.
,
Shen
,
S. -C.
,
Chou
,
M. -C.
, and
Chou
,
H. -P.
, 2002, “
A Low-Temperature Wafer Bonding Technique Using Patternable Materials
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
611
615
.
11.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
12.
Siegel
,
R.
, and
Howell
,
J. R.
, 1992,
Thermal Radiation Heat Transfer
,
Hemisphere
,
New York
.
13.
Devienne
,
F. M.
, 2002, “
Low Density Heat Transfer
,”
Advances in Heat Transfer
, Vol.
2
,
Academic
,
New York
.
14.
Sherman
,
F. S.
, 1963, “
A Survey of Experimental Results and Methods for the Transition Regime of Rarefied Gas Dynamics
,”
Rarefied Gas Dynamics
, Vol.
II
,
J. A.
Lauermann
, ed.,
Academic
,
New York
, pp.
228
260
.
You do not currently have access to this content.