While many of the published papers on nanofluids focus on measuring the increased thermal conductivity of the suspension under static conditions, the convective performance of these fluids has received relatively little attention. The present work measures the effective thermal conductivity of nanofluids under developing convective boundary layer conditions in tubes of diameter 5 mm. The experiments use a hydrodynamically fully developed laminar tube flow in the range 500Re1600 with constant wall heat flux. The experiments were validated through measurements on pure de-ionized (DI) water, which results in a thermal conductivity value that agrees within 0.4% of handbook value. The increase in effective thermal conductivity for DI-water/Al2O3 nanofluids is 6% for 2% volume concentration of Al2O3, which is consistent with the previously reported conductivity values for this sample. For a suspension of multiwall carbon nanotubes in silicone oil, the thermal conductivity is increased by 10% over that of the base fluid for a concentration of 0.2% by volume. Scanning electron microscopy was utilized to examine the structure of the dry state of the nanotubes and elucidate the performance differences of carbon nanomaterials.

1.
Ahuja
,
A. S.
, 1975, “
Augmentation of Heat Transport in Laminar Flow of Polystyrene Suspensions
,”
J. Appl. Phys.
0021-8979,
46
(
8
), pp.
3408
3425
.
2.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Particles
,”
Appl. Phys. Lett.
0003-6951,
78
(
6
), pp.
718
720
.
3.
Lee
,
S.
,
Choi
,
S. U.-S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
4.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
(
14
), pp.
2252
2254
.
5.
Eastman
,
J. A.
,
Choi
,
U. S.
,
Li
,
S.
,
Thompson
,
L. J.
, and
Lee
,
S.
, 1997, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
457
, pp.
3
11
.
6.
Xie
,
H.
,
Lee
,
H.
,
Youn
,
W.
, and
Choi
,
M.
, 2003, “
Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities
,”
J. Appl. Phys.
0021-8979,
94
(
8
), pp.
4967
4971
.
7.
Ju
,
Y. S.
,
Kim
,
J.
, and
Hung
,
M. -T.
, 2008, “
Experimental Study of Heat Conduction in Aqueous Suspensions of Aluminum Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
130
, pp.
092403
.
8.
Das
,
S. K.
,
Putra
,
S.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
9.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
, 1999, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
0887-8722,
13
(
4
), pp.
474
480
.
10.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
, 2004, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
1531-7331,
34
, pp.
219
246
.
11.
Ju
,
Y. S.
, and
Kim
,
J.
, 2007, “
Experimental Study of Heat Conduction in Aqueous Suspensions of Aluminum Oxide Nanoparticles
,”
Proceedings of IPACK2007
, ASME InterPACK ’07, Vancouver, BC, Canada, Paper No. IPACK2007-32689.
12.
Xuan
,
Y.
, and
Li
,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
151
155
.
13.
Wen
,
D.
, and
Ding
,
Y.
, 2004, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5181
5188
.
14.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
S. Gh.
, 2006, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
203
210
.
15.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
, Chap. 9.
16.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
, Chap. 9.
17.
Pohl
,
M.
, and
Schubert
,
H.
, 2004, “
Dispersion and Deagglomeration of Nanoparticles in Aqueous Solutions
,” PARTEC, pp.
1
4
.
18.
Stokes
,
R. J.
, and
Evans
,
D. F.
, 1997,
Fundamentals of Interfacial Engineering
,
Wiley-VCH
,
New York
, Chap. 4.
19.
Lee
,
J.
,
Flynn
,
R. D.
,
Goodson
,
K. E.
, and
Eaton
,
J. K.
, 2007, “
Convective Heat Transfer of Nanofluids (DI Water-Al2O3) in Microchannels
,”
Proceedings of HT2007
, ASME-JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, BC, Canada, Paper No. HT2007-32630.
20.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
21.
Moffat
,
R. J.
, 1982, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
, pp.
250
260
. 0098-2202
22.
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
, and
Eaton
,
J. K.
, 2007, “
Impact of Thermodiffusion on Temperature Fields in Stationary Nanofluids
,”
Proceedings of IPACK2007
, ASME InterPACK ’07, Vancouver, BC, Canada, Paper No. IPACK2007–33293.
You do not currently have access to this content.