The estimation of heat flux in the nonlinear heat conduction problem becomes more challenging when the material at the boundary loses its mass due to phase change, chemical erosion, oxidation, or mechanical removal. In this paper, a new gradient-type method with an adjoint problem is employed to predict the unknown time-varying heat flux at the receding surface in the nonlinear heat conduction problem. Particular features of this novel approach are discussed and examined. Results obtained by the new method for several test cases are benchmarked and analyzed using numerical experiments with simulated exact and noisy measurements. Exceedingly reliable estimation on the heat flux can be obtained from the knowledge of the transient temperature recordings, even in the case with measurement errors. In order to evaluate the performance characteristics of the present inverse scheme, simulations are conducted to analyze the effects of this technique with regard to the conjugate gradient method with an adjoint problem and variable metric method with an adjoint problem. The results obtained show that the present inverse scheme distinguishably accelerates the convergence rate, which approve the well capability of the method for this type of heat conduction problems.

1.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
, 1985,
Inverse Heat Conduction
,
Wiley
,
New York
.
2.
Özisik
,
M. N.
, and
Orlande
,
H. R. B.
, 2000,
Inverse Heat Transfer Fundamentals and Applications
,
Taylor & Francis
,
New York
.
3.
Osman
,
A. M.
, and
Beck
,
J. V.
, 1990, “
Investigation of Transient Heat Transfer Coefficients in Quenching Experiments
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
843
848
.
4.
Beck
,
J. V.
,
Blackwell
,
B.
, and
Haji-Sheikh
,
A.
, 1996, “
Comparison of Some Inverse Heat Conduction Methods Using Experimental Data
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
17
), pp.
3649
3657
.
5.
Osman
,
A. M.
,
Dowding
,
K. J.
, and
Beck
,
J. V.
, 1997, “
Numerical Solution of the General Two-Dimensional Inverse Heat Conduction Problem (IHCP)
,”
ASME J. Heat Transfer
0022-1481,
119
, pp.
38
45
.
6.
Dowding
,
K. J.
, and
Beck
,
J. V.
, 1999, “
A Sequential Gradient Method for the Inverse Heat Conduction Problem (IHCP)
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
300
306
.
7.
Louahlia-Gualous
,
H.
,
Panday
,
P. K.
, and
Artioukhine
,
E. A.
, 2003, “
Inverse Determination of the Local Heat Transfer Coefficients for Nucleate Boiling on a Horizontal Cylinder
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
1087
1095
.
8.
Lagier
,
G. L.
,
Lemonnier
,
H.
, and
Coutris
,
N.
, 2004, “
A Numerical Solution of the Linear Multidimensional Unsteady Inverse Heat Conduction Problem With the Boundary Element
,”
Int. J. Therm. Sci.
1290-0729,
43
, pp.
145
155
.
9.
Behbahani-nia
,
A.
, and
Kowsary
,
F.
, 2004, “
A Dual Reciprocity BE-Based Sequential Function Specification Solution Method for Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1247
1255
.
10.
Kowsary
,
F.
,
Behbahani-nia
,
A.
, and
Pourshaghaghy
,
A.
, 2006, “
Transient Heat Flux Function Estimation Utilizing the Variable Metric Method
,”
Int. Commun. Heat Mass Transfer
0735-1933,
33
, pp.
800
810
.
11.
Huang
,
C. H.
, and
Lin
,
C. Y.
, 2008, “
Inverse Hyperbolic Conduction Problem in Estimating Two Unknown Surface Heat Fluxes Simultaneously
,”
J. Thermophys. Heat Transfer
0887-8722,
22
(
4
), pp.
766
774
.
12.
Hakkaki-Fard
,
A.
,
Molavi
,
H.
, and
Rahmani
,
R. K.
, 2009, “
A Novel Method for Combined Parameter and Function Estimation Problems
,”
Proceedings of the 2009 ASME Summer Heat Transfer Conference
, San Francisco, CA, July 19–23.
13.
Beck
,
J. V.
, and
Osman
,
A. M.
, 1989, “
Nonlinear Inverse Problem for the Estimation of Time-and-Space Dependent Heat Transfer Coefficients
,”
J. Thermophys. Heat Transfer
0887-8722,
3
(
2
), pp.
146
152
.
14.
Yang
,
C. Y.
, 2003, “
Estimation of Boundary Conditions in Nonlinear Inverse Heat Conduction Problems
,”
J. Thermophys. Heat Transfer
0887-8722,
17
(
3
), pp.
389
395
.
15.
Loulou
,
T.
, and
Scott
,
E. P.
, 2003, “
Estimation of 3-Dimensional Heat Flux From Surface Temperature Measurements Using an Iterative Regularization Method
,”
Heat Mass Transfer
0947-7411,
39
, pp.
435
443
.
16.
Daouas
,
N.
, and
Radhouani
,
M. S.
, 2004, “
A New Approach of the Kalman Filter Using Future Temperature Measurements for Nonlinear Inverse Heat Conduction Problems
,”
Numer. Heat Transfer, Part B
1040-7790,
45
, pp.
565
585
.
17.
Girault
,
M.
, and
Petit
,
D.
, 2005, “
Identification Methods in Nonlinear Heat Conduction. Part II: Inverse Problem Using a Reduced Model
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
119
133
.
18.
Chen
,
H. T.
, and
Wu
,
X. Y.
, 2007, “
Estimation of Surface Conditions for Nonlinear Inverse Heat Conduction Problems Using the Hybrid Inverse Scheme
,”
Numer. Heat Transfer, Part B
1040-7790,
51
, pp.
159
178
.
19.
Molavi
,
H.
,
Hakkaki-Fard
,
A.
,
Pourshaban
,
I.
,
Mahbubi Fard
,
M.
, and
Rahmani
,
R. K.
, 2009, “
Estimation of Temperature-Dependent Thermophysical Properties of Noncharring Ablator
,”
J. Thermophys. Heat Transfer
0887-8722,
23
(
1
), pp.
50
58
.
20.
Molavi
,
H.
,
Pourshaban
,
I.
,
Hakkaki-Fard
,
A.
,
Molavi
,
M.
,
Ayasoufi
,
A.
, and
Rahmani
,
R. K.
, 2009, “
Inverse Identification of Thermal Properties of Charring Ablators
,”
Numer. Heat Transfer, Part B
1040-7790,
56
, pp.
478
501
.
21.
de Oliveira
,
A. P.
, and
Orlande
,
H. R. B.
, 2004, “
Estimation of the Heat Flux at the Surface of Ablating Materials by Using Temperature and Surface Position Measurements
,”
Inverse Probl. Sci. Eng.
1741-5977,
12
(
5
), pp.
563
577
.
22.
Hakkaki-Fard
,
A.
, and
Kowsary
,
F.
, 2008, “
Heat Flux Estimation in a Charring Ablator
,”
Numer. Heat Transfer, Part A
1040-7782,
53
(
5
), pp.
543
560
.
23.
Petrushevsky
,
V.
, and
Cohen
,
S.
, 1999, “
Nonlinear Inverse Heat Conduction With a Moving Boundary: Heat Flux and Surface Recession Estimation
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
708
711
.
24.
Dec
,
J.
, and
Braun
,
R.
, 2006, “
An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design
,”
Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 9–12.
25.
Russell
,
G. W.
, 2002, “
Analytic Modeling and Experimental Validation of Intumescent Behavior of Charring Heatshield Materials
,” Ph.D. thesis, Mechanical Engineering Department, University of Alabama in Huntsville, AL.
26.
Amar
,
A. J.
,
Blackwell
,
B. F.
, and
Edwards
,
J. R.
, 2008, “
One-Dimensional Ablation Using a Full Newton’s Method and Finite Control Volume Procedure
,”
J. Thermophys. Heat Transfer
0887-8722,
22
(
1
), pp.
71
82
.
27.
Noffz
,
G. K.
, and
Bowman
,
M. P.
, 1996, “
Design and Laboratory Validation of a Capacitive Sensor for Measuring the Recession of a Thin-Layered Ablator
,” NASA Technical Memorandum No. 4777.
28.
Landau
,
H. G.
, 1950, “
Heat Conduction in a Melting Solid
,”
Q. Appl. Math.
0033-569X,
8
, pp.
81
94
.
29.
Patankar
,
S. V.
, 1986,
Numerical Heat Transfer and Fluid Flows
,
Hemisphere
,
London
.
30.
Glynn
,
P.
, and
Robinson
,
S. M.
, 1999,
Numerical Optimization
,
Springer-Verlag
,
New York
.
31.
Alifanov
,
O. M.
, 1994,
Inverse Heat Transfer Problems
,
Springer-Verlag
,
New York
.
32.
Potts
,
R. L.
, 1995, “
Application of Integral Methods to Ablation Charring Erosion, A Review
,”
J. Spacecr. Rockets
0022-4650,
32
(
2
), pp.
200
209
.
33.
Pourshaghaghy
,
A.
,
Kowsary
,
F.
, and
Behbahaninia
,
A.
, 2007, “
Comparison of Four Different Versions of the Variable Metric Method for Solving Inverse Heat Conduction Problems
,”
Heat Mass Transfer
0947-7411,
43
, pp.
285
294
.
You do not currently have access to this content.