Pyroelectric energy conversion offers a way to convert waste heat directly into electricity. It makes use of the pyroelectric effect to create a flow of charge to or from the surface of a material as a result of heating or cooling. However, an existing pyroelectric energy converter can only operate at low frequencies due to a relatively small convective heat transfer rate between the pyroelectric materials and the working fluid. On the other hand, energy transfer by thermal radiation between two semi-infinite solids is nearly instantaneous and can be enhanced by several orders of magnitude from the conventional Stefan–Boltzmann law as the gap separating them becomes smaller than Wien’s displacement wavelength. This paper explores a novel way to harvest waste heat by combining pyroelectric energy conversion and nanoscale thermal radiation. A new device was investigated numerically by accurately modeling nanoscale radiative heat transfer between a pyroelectric element and hot and cold plates. Silica absorbing layers on top of every surface were used to further increase the net radiative heat fluxes. Temperature oscillations with time and performances of the pyroelectric converter were predicted at various frequencies. The device using 60/40 porous poly(vinylidene fluoride–trifluoroethylene) achieved a 0.2% efficiency and a 0.84mW/cm2 electrical power output for the cold and hot sources at 273 K and 388 K, respectively. Better performances could be achieved with 0.9Pb(Mg1/3Nb2/3)0.1PbTiO3 (0.9PMN-PT), namely, an efficiency of 1.3% and a power output of 6.5mW/cm2 between the cold and hot sources at 283 K and 383 K, respectively. These results are compared with alternative technologies, and suggestions are made to further improve the device.

1.
Lawrence Livermore National Laboratory
, 2008, “
U.S. Energy Flow Trends—2002
,” https://eed.llnl.gov/flow/02flow.phphttps://eed.llnl.gov/flow/02flow.php
2.
Olsen
,
R.
, 1982, “
Ferroelectric Conversion of Heat to Electrical Energy—A Demonstration
,”
J. Energy
0146-1412,
6
(
2
), pp.
91
95
.
3.
Olsen
,
R.
,
Bruno
,
D.
, and
Briscoe
,
J.
, 1984, “
Cascaded Pyroelectric Energy Converter
,”
Ferroelectrics
0015-0193,
59
(
1
), pp.
205
219
.
4.
Olsen
,
R.
,
Bruno
,
D.
,
Briscoe
,
J.
, and
Butler
,
W.
, 1981, “
A Pyroelectric Energy Converter Which Employs Regeneration
,”
Ferroelectrics
0015-0193,
38
(
1–4
), pp.
975
978
.
5.
Olsen
,
R.
, and
Brown
,
D.
, 1982, “
High-Efficiency Direct Conversion of Heat to Electrical Energy-Related Pyroelectric Measurements
,”
Ferroelectrics
0015-0193,
40
(
1–2
), pp.
17
27
.
6.
Olsen
,
R.
,
Bruno
,
D.
, and
Briscoe
,
J. M.
, 1985, “
Pyroelectric Conversion Cycle of Vinylidene Fluoride-Trifluoroethylene Copolymer
,”
J. Appl. Phys.
0021-8979,
57
(
11
), pp.
5036
5042
.
7.
Olsen
,
R.
,
Bruno
,
D.
, and
Briscoe
,
J. M.
, 1985, “
Pyroelectric Conversion Cycles
,”
J. Appl. Phys.
0021-8979,
58
(
12
), pp.
4709
4716
.
8.
Ikura
,
M.
, 2002, “
Conversion of Low-Grade Heat to Electricity Using Pyroelectric Copolymer
,”
Ferroelectrics
0015-0193,
267
(
6
), pp.
403
408
.
9.
Kouchachvili
,
L.
, and
Ikura
,
M.
, 2007, “Pyroelectric Conversion-Effects of P(VDF-TrFE) Preconditioning on Power Conversion,”
J. Electrost.
0304-3886,
65
(
3
), pp.
182
188
.
10.
Olsen
,
R.
, and
Bruno
,
D.
, 1986, “
Pyroelectric Conversion Materials
,”
Proceedings of the 21st Intersociety Energy Conversion Engineering Conference
, pp.
89
93
.
11.
Vanderpool
,
D.
,
Yoon
,
J.
, and
Pilon
,
L.
, 2008, “
Simulations of a Prototypical Device Using Pyroelectric Materials for Harvesting Waste Heat
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
5052
5062
.
12.
Nguyen
,
H. T.
,
Navid
,
A.
, and
Pilon
,
L.
, 2010, “
Improved Pyroelectric Energy Converter for Waste Heat Energy Harvesting Using Co-Polymer P(VDF-TrFE) and Olsen Cycle
,”
Appl. Therm. Eng.
1359-4311, to be published.
13.
Lang
,
S. B.
, 2005, “
Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool
,”
Phys. Today
0031-9228,
58
(
8
), pp.
31
36
.
14.
Cravalho
,
E. G.
,
Tien
,
C. L.
, and
Caren
,
R. P.
, 1967, “
Effect of Small Spacings on Radiative Transfer Between Two Dielectrics
,”
ASME J. Heat Transfer
0022-1481,
89
(
4
), pp.
351
358
.
15.
Polder
,
D.
, and
Van Hove
,
M.
, 1971, “
Theory of Radiative Heat Transfer Between Closely Spaced Bodies
,”
Phys. Rev. B
0163-1829,
4
(
10
), pp.
3303
3314
.
16.
Olsen
,
R.
, and
Evans
,
D.
, 1983, “
Pyroelectric Energy Conversion—Hysteresis Loss and Temperature Sensitivity of a Ferroelectric Material
,”
J. Appl. Phys.
0021-8979,
54
(
10
), pp.
5941
5944
.
17.
Kouchachvili
,
L.
, and
Ikura
,
M.
, 2008, “
Improving the Efficiency of Pyroelectric Conversion
,”
Int. J. Energy Res.
0363-907X,
32
(
4
), pp.
328
335
.
18.
Navid
,
A.
,
Lynch
,
C. S.
, and
Pilon
,
L.
, 2010, “
Purified and Porous Poly(Vinylidene Fluoride-Trifluoroethylene) Thin Films for Pyroelectric Infrared Sensing and Energy Harvesting
,”
Smart Mater. Struct.
0964-1726,
19
, p.
055006
.
19.
Clingman
,
W. H.
, and
Moore
,
R. G.
, 1961, “
Application of Ferroelectricity to Energy Conversion Processes
,”
J. Appl. Phys.
0021-8979,
32
(
4
), pp.
675
681
.
20.
Fatuzzo
,
E.
,
Kiess
,
H.
, and
Nitsche
,
R.
, 1966, “
Theoretical Efficiency of Pyroelectric Power Converters
,”
J. Appl. Phys.
0021-8979,
37
(
2
), pp.
510
516
.
21.
van der Ziel
,
A.
, 1974, “
Solar Power Generation With the Pyroelectric Effect
,”
J. Appl. Phys.
0021-8979,
45
(
9
), p.
4128
.
22.
Itskovsky
,
M. A.
, 1999, “
Pyroelectric Hysteresis Loop at Ferroelectric Phase Transition
,”
J. Appl. Phys.
0021-8979,
85
(
8
), pp.
4256
4258
.
23.
Smolenskii
,
G. A.
,
Krainik
,
N. N.
,
Khuchua
,
N. P.
,
Zhdanova
,
V. V.
, and
Mylnikova
,
I. E.
, 1966, “
The Curie Temperature of LiNbO3
,”
Phys. Status Solidi B
0370-1972,
13
(
2
), pp.
309
314
.
24.
Gonzalo
,
J. A.
, 1976, “
Ferroelectric Materials as Energy Converters
,”
Ferroelectrics
0015-0193,
11
(
1
), pp.
423
430
.
25.
Sebald
,
G.
,
Pruvost
,
S.
, and
Guyomar
,
D.
, 2008, “
Energy Harvesting Based on Ericsson Pyroelectric Cycles in a Relaxor Ferroelectric Ceramic
,”
Smart Mater. Struct.
0964-1726,
17
(
1
), p.
015012
.
26.
Mischenko
,
A. S.
,
Zhang
,
Q.
,
Whatmore
,
R. W.
,
Scott
,
J. F.
, and
Mathur
,
N. D.
, 2006, “
Giant Electrocaloric Effect in the Thin Film Relaxor Ferroelectric 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 Near Room Temperature
,”
Appl. Phys. Lett.
0003-6951,
89
(
24
), p.
242912
.
27.
Rytov
,
S. M.
, 1953,
Theory of Electrical Fluctuation and Thermal Radiation
,
Academy of Science of USSR
,
Moscow
.
28.
Mulet
,
J. P.
,
Joulain
,
K.
,
Carminati
,
R.
, and
Greffet
,
J. J.
, 2002, “
Enhanced Radiative Heat Transfer at Nanometric Distances
,”
Microscale Thermophys. Eng.
1089-3954,
6
(
3
), pp.
209
222
.
29.
DiMatteo
,
R. S.
,
Greiff
,
P.
,
Finberg
,
S. L.
,
Young-Waithe
,
K. A.
,
Choy
,
H. K. H.
,
Masaki
,
M. M.
, and
Fonstad
,
C. G.
, 2001, “
Enhanced Photogeneration of Carriers in a Semiconductor Via Coupling Across a Nonisothermal Nanoscale Vacuum Gap
,”
Appl. Phys. Lett.
0003-6951,
79
(
12
), pp.
1894
1896
.
30.
Whale
,
M. D.
, and
Cravalho
,
E. G.
, 2002, “
Modeling and Performance of Microscale Thermophotovoltaic Energy Conversion Devices
,”
IEEE Trans. Energy Convers.
0885-8969,
17
(
1
), pp.
130
142
.
31.
Zhang
,
Z. M.
,
Fu
,
C. J.
, and
Zhu
,
Q. Z.
, 2003, “
Optical and Thermal Radiative Properties of Semiconductors Related to Micro/Nanotechnology
,”
Adv. Heat Transfer
0065-2717,
37
, pp.
179
296
.
32.
Hargreaves
,
C.
, 1969, “
Anomalous Radiative Transfer Between Closely-Spaced Bodies
,”
Phys. Lett.
0370-2693,
30A
(
9
), pp.
491
492
.
33.
Domoto
,
G. A.
,
Boehm
,
R. F.
, and
Tien
,
C. L.
, 1970, “
Experimental Investigation of Radiative Transfer Between Metallic Surfaces at Cryogenic Temperatures
,”
ASME J. Heat Transfer
0022-1481,
92
(
3
), pp.
412
417
.
34.
Kittel
,
A.
,
Wischnath
,
U. F.
,
Welker
,
J.
,
Huth
,
O.
,
Ruting
,
F.
, and
Biehs
,
S. A.
, 2008, “
Near-Field Thermal Imaging of Nanostructured Surfaces
,”
Appl. Phys. Lett.
0003-6951,
93
(
19
), p.
193109
.
35.
Pan
,
J. L.
, 2000, “
Radiative Transfer Over Small Distances From a Heated Metal
,”
Opt. Lett.
0146-9592,
25
(
6
), pp.
369
371
.
36.
Pan
,
J. L.
,
Choy
,
H. K. H.
, and
Fonstad
,
C. G.
, 2000, “
Very Large Radiative Transfer Over Small Distances From a Blackbody for Thermophotovoltaic Applications
,”
IEEE Trans. Electron Devices
0018-9383,
47
(
1
), pp.
241
249
.
37.
Loomis
,
J.
, and
Maris
,
H.
, 1994, “
Theory of Heat Transfer by Evanescent Electromagnetic-Waves
,”
Phys. Rev. B
0163-1829,
50
(
24
), pp.
18517
18524
.
38.
Pendry
,
J. B.
, 1999, “
Radiative Exchange of Heat Between Nanostructures
,”
J. Phys.: Condens. Matter
0953-8984,
11
(
35
), pp.
6621
6633
.
39.
Hu
,
L.
,
Narayanaswamy
,
A.
,
Chen
,
X.
, and
Chen
,
G.
, 2008, “
Near-Field Thermal Radiation Between Two Closely Spaced Glass Plates Exceeding Planck’s Blackbody Radiation Law
,”
Appl. Phys. Lett.
0003-6951,
92
(
13
), p.
133106
.
40.
Narayanaswamy
,
A.
,
Shen
,
S.
, and
Chen
,
G.
, 2008, “
Near-Field Radiative Heat Transfer Between a Sphere and a Substrate
,”
Phys. Rev. B
0163-1829,
78
(
11
), p.
115303
.
41.
Narayanaswamy
,
A.
,
Shen
,
S.
,
Hu
,
L.
,
Chen
,
X. Y.
, and
Chen
,
G.
, 2009, “
Breakdown of the Planck Blackbody Radiation Law at Nanoscale Gaps
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
96
(
2
), pp.
357
362
.
42.
Shen
,
S.
,
Narayanaswamy
,
A.
, and
Chen
,
G.
, 2009, “
Surface Phonon Polaritons Mediated Energy Transfer Between Nanoscale Gaps
,”
Nano Lett.
1530-6984,
9
(
8
), pp.
2909
2913
.
43.
Biehs
,
S. A.
,
Reddig
,
D.
, and
Holthaus
,
M.
, 2007, “
Thermal Radiation and Near-Field Energy Density of Thin Metallic Films
,”
Eur. Phys. J. B
1434-6028,
55
(
3
), pp.
237
251
.
44.
Biehs
,
S. A.
, 2007, “
Thermal Heat Radiation, Near-Field Energy Density and Near-Field Radiative Heat Transfer of Coated Materials
,”
Eur. Phys. J. B
1434-6028,
58
(
4
), pp.
423
431
.
45.
Francoeur
,
M.
,
Mengüç
,
M. P.
, and
Vaillon
,
R.
, 2008, “
Near-Field Radiative Heat Transfer Enhancement Via Surface Phonon Polaritons Coupling in Thin Films
,”
Appl. Phys. Lett.
0003-6951,
93
(
4
), p.
043109
.
46.
Fu
,
C. J.
, and
Tan
,
W. C.
, 2009, “
Near-Field Radiative Heat Transfer Between Two Plane Surfaces With One Having a Dielectric Coating
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
110
(
12
), pp.
1027
1036
.
47.
Volokitin
,
A. I.
, and
Persson
,
B. N. J.
, 2001, “
Radiative Heat Transfer Between Nanostructures
,”
Phys. Rev. B
0163-1829,
63
(
20
), p.
205404
.
48.
Modest
,
M.
, 2003,
Radiative Heat Transfer
,
Academic
,
San Diego, CA
.
49.
Joulain
,
K.
,
Mulet
,
J. P.
,
Marquier
,
F.
,
Carminati
,
R.
, and
Greffet
,
J. J.
, 2005, “
Surface Electromagnetic Waves Thermally Excited: Radiative Heat Transfer, Coherence Properties and Casimir Forces Revisited in the Near Field
,”
Surf. Sci. Rep.
0167-5729,
57
(
3–4
), pp.
59
112
.
50.
Brewster
,
M. Q.
, 1992,
Thermal Radiative Transfer and Properties
,
Wiley-Interscience
,
New York
.
51.
Chan
,
H. B.
,
Aksyuk
,
V. A.
,
Kleiman
,
R. N.
,
Bishop
,
D. J.
, and
Capasso
,
F.
, 2001, “
Quantum Mechanical Actuation of Microelectromechanical Systems by the Casimir Force
,”
Science
0036-8075,
291
(
5510
), pp.
1941
1944
.
52.
Bohren
,
C. F.
, and
Huffman
,
D. R.
, 2004,
Absorption and Scattering of Light by Small Particles
,
Wiley-Interscience
,
New York
.
53.
Casimir
,
H. B. G.
, and
Polder
,
D.
, 1948, “
The Influence of Retardation on the London-van der Waals Forces
,”
Phys. Rev.
0096-8250,
73
(
4
), pp.
360
372
.
54.
Serry
,
F. M.
,
Walliser
,
D.
, and
Maclay
,
G. J.
, 1995, “
The Anharmonic Casimir Oscillator (ACO)—The Casimir Effect in a Model Microelectromechanical System
,”
J. Microelectromech. Syst.
1057-7157,
4
(
4
), pp.
193
205
.
55.
Mostepanenko
,
V. M.
, and
Trunov
,
N. N.
, 1997,
The Casimir Effect and Its Applications
,
Oxford University Press
,
New York
.
56.
Israelachvili
,
J.
, 1992,
Intermolecular and Surface Forces
,
Academic
,
San Diego, CA
.
57.
Nichols
,
E. F.
, and
Hull
,
G. F.
, 1903, “
The Pressure Due to Radiation
,”
Astrophys. J.
0004-637X,
17
(
1
), pp.
315
351
.
58.
Curzon
,
F. L.
, and
Ahlborn
,
B.
, 1975, “
Efficiency of a Carnot Engine at Maximum Power Output
,”
Am. J. Phys.
0002-9505,
43
(
1
), pp.
22
24
.
59.
Böttner
,
H.
,
Nurnus
,
J.
,
Gavrikov
,
A.
,
Kühner
,
G.
,
Jägle
,
M.
,
Künzel
,
C.
,
Eberhard
,
D.
,
Plescher
,
G.
,
Schubert
,
A.
, and
Schlereth
,
K. H.
, 2004, “
New Thermoelectric Components Using Microsystem Technologies
,”
J. Microelectromech. Syst.
1057-7157,
13
(
3
), pp.
414
420
.
60.
Priya
,
S.
, and
Inman
,
D. J.
, 2009,
Energy Harvesting Technologies
,
Springer
,
New York
.
61.
Jordan
,
T.
,
Ounaies
,
Z.
,
Tripp
,
J.
, and
Tcheng
,
P.
, 1999, “
Electrical Properties and Power Considerations of a Piezoelectric Actuator
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
604
, pp.
203
208
.
You do not currently have access to this content.