This paper presents a numerical investigation of the film-cooling performance of a novel film-cooling hole in comparison with a fan-shaped hole. The novel shaped hole is designed to increase the lateral spreading of coolant on the cooling surface. The film-cooling performance of the novel shaped hole is evaluated at a density ratio of 1.75 and the range of the blowing ratio of 0.5–2.5. The simulations were performed using three-dimensional Reynolds-averaged Navier–Stokes analysis with the SST k-ω model. The numerical results for the fan-shaped hole show very good agreement with the experimental data. For the blowing ratio of 0.5, the novel shaped film-cooling hole shows a similar cooling performance as the fan-shaped hole. However, as the blowing ratio increases, the novel shaped hole shows greatly improved lateral spreading of the coolant and the cooling performance in terms of the film-cooling effectiveness in comparison with the fan-shaped hole.

References

1.
Goldstein
,
R. J.
, 1971, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.
2.
Bunker
,
R. S.
, 2005, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME Trans. J. Heat Transfer
,
127
, pp.
441
453
.
3.
Saumweber
,
C.
, and
Schulz
,
A.
, 2008, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,” ASME Turbo Expo 2008, Berlin, Paper No. GT2008-51038.
4.
Gritsch
,
M.
,
Colban
,
W.
,
Schar
,
H.
, and
Dobbeling
,
K.
, 2005, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
127
, pp.
718
725
.
5.
Reiss
,
H.
, and
Bolcs
,
A.
, 2000, “
Experimental Study of Showerhead Cooling on a Cylinder Comparing Several Configurations Using Cylindrical and Shaped Holes
,”
ASME J. Turbomach.
,
122
, pp.
161
169
.
6.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2003, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
, pp.
65
73
.
7.
Hyams
,
D. G.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film Cooling Physics: Part 3—Streamwise Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
, pp.
122
132
.
8.
Nguyen
,
C. Q.
,
Johnson
,
P. L.
,
Bernier
,
B. C.
,
Ho
,
S. H.
, and
Kapat
,
J. S.
, 2011, “
Comparison of Film Effectiveness and Cooling Uniformity of Conical and Cylindrical-Shaped Film Hole With Coolant-Exit Temperature Correction
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
, p.
031011
.
9.
Lee
,
K. D.
, and
Kim
,
K. Y.
, 2009, “
Optimization of a Cylindrical Film Cooling Hole Using Surrogate Modeling
,”
Numer. Heat Transfer, Part A
,
55
(
4
), pp.
362
380
.
10.
Lee
,
K. D.
,
Afzal
,
H.
, and
Kim
,
K. Y.
, 2010, “
Multi-Objective Optimization of a Laidback Fan Shaped Film-Cooling Hole Using Evolutionary Algorithm
,”
Int. J. Fluid Mach. Syst.
,
3
(
2
), pp.
150
159
.
11.
Lee
,
K. D.
, and
Kim
,
K. Y.
, 2011, “
Surrogate Based Optimization of a Laidback Fan-Shaped Hole for Film-Cooling Effectiveness
,”
Int. J. Heat Fluid Flow
,
32
, pp.
226
238
.
12.
Heidmann
,
J. D.
, 2008, “
A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio
,” ASME Turbo Expo, Berlin, Paper No. GT2008-50845.
13.
Taslim
,
M. E.
, 2004, “
Discharge Coefficient Measurements for Flow through Compound-Angle Conical Holes With Cross-Flow
,”
Int. J. Rotating Mach.
,
10
(
2
), pp.
145
153
.
14.
Lu
,
Y.
, 2007, “
Effect of Hole Configurations on Film Cooling From Cylindrical Inclined Holes for the Application to Gas Turbine Blades
,” Ph.D. thesis, Louisiana State University, Baton Rouge.
15.
Liu
,
K. S.
,
Malak
,
M. F.
,
Tapia
,
L. A.
, and
Crites
,
D. C.
,
Ramachadran
,
D.
,
Srinivasan
,
B.
, and
Venkaramanan
,
J.
, 2010, “
Enhanced Film Cooling Effectiveness With New Shaped Holes
,” ASME Turbo Expo, Glasgow, Paper No. GT2010-22774.
16.
Ghorab
,
M.
,
Hassan
,
I.
, and
Lucas
,
T.
, 2010, “
An Experimental Investigation of a New Hybrid Film Cooling Scheme
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4994
5007
.
17.
Lui
,
C. L.
,
Zhu
,
H. R.
,
Bai
,
J. T.
, and
Xu
,
D. C.
, 2011, “
Film Cooling Performance of Converging-Slot Holes With Different Exit-Entry Area Ratios
,”
ASME J. Turbomach.
,
133
, p.
011020
.
18.
Zhang
,
X. Z.
, and
Hassan
,
I.
, 2006, “
Film Cooling Effectiveness of an Advanced-Louver Cooling Scheme for Gas Turbines
,”
J. Thermophys. Heat Transfer
,
20
(
4
), pp.
754
763
.
19.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
, 2002, “
A Converging Slot-Hole Film-Cooling Geometry—Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
20.
Liu
,
C. I.
,
Zhu
,
H. R.
, and
Bai
,
J. T.
, 2010, “
Film Cooling Performance of Waist-Shaped Slot Holes
,” ASME Turbo Expo, Glasgow, Paper No. GT2010-22237.
21.
CFX-11.0 Solver Theory, Ansys Inc., 2008.
22.
Menter
,
F.
, and
Esch
,
T.
, 2001, “
Elements of Industrial Heat Transfer Prediction
,”
16th Bazilian Congress of Mechnacal Engineering (COBEM)
,
Uberlandia Brazil
.
23.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T.
, 1997, “
Turbulence Modeling Validation
,”
28th Fluid Dynamics Conference
, AIAA Paper No. 1997-2121.
24.
Haven
,
B. A.
, and
Kurosaka
,
M.
, 1997, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
Fluid Mech.
,
352
, pp.
27
64
.
You do not currently have access to this content.