In this paper, the effects of uncertainties in physical properties on predicting entropy generation for a steady laminar flow of Al2O3–ethylene glycol nanofluid (0φ6%) between two concentric rotating cylinders are investigated. For this purpose, six different models by combining of three relations for thermal conductivity (Bruggeman, Hamilton–Crosser, and Yu–Choi) and two relations for dynamic viscosity (Brinkman and Maiga et al.) are applied. The governing equations with reasonable assumptions in cylindrical coordinates are simplified and solved to obtain analytical expressions for average entropy generation (NS)ave and average Bejan number (Be)ave. The results show that, when the contribution of heat transfer to entropy generation for the base fluid is dominant, a critical radius ratio (ΠC) can be determined at which all six models predict the reduction in entropy generation with increases of volume fraction of nanoparticles. It is also found that, when the contribution of viscous effects to entropy generation is adequately high for the base fluid (φ=0), all models predict the increase of entropy generation with increases of particle loading.

References

1.
Kotcioglu
,
I.
, and
Cansiz
,
A.
, 2011, “
Heat Transfer Properties and Energy-Exergy Efficiency in a Finned Cross-Flow Heat Recovery Unit
,”
ASME J. Heat Transfer
,
133
, p.
044503
.
2.
Khan
,
W. A.
, and
Reddy Gorla
,
R. S.
, 2011, “
Second Law Analysis for Free Convection in Non-Newtonian Fluids Over a Horizontal Plate Embedded in a Porous Medium: Prescribed Surface Temperature
,”
ASME J. Heat Transfer
,
133
, p.
052601
.
3.
Saffaripour
,
M.
, and
Culham
,
R.
, 2010, “
Measurement of Entropy Generation in Microscale Thermal-Fluid Systems
,”
ASME J. Heat Transfer
,
132
, p.
121401
.
4.
Arikoglu
,
A.
,
Komurgoz
,
G.
,
Ozkol
,
I.
, and
Gunes
,
A. Y.
, 2010, “
Combined Effects of Temperature and Velocity Jump on the Heat Transfer, Fluid Flow, and Entropy Generation Over a Single Rotating Disk
,”
ASME J. Heat Transfer
,
132
, p.
111703
.
5.
Bejan
,
A.
, 1982, “
Second-Law Analysis in Heat Transfer and Thermal Design
,”
Adv. Heat Transfer
,
15
, pp.
1
58
.
6.
Bejan
,
A.
, 1996,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
7.
Herwig
,
H.
, 2012, “
The Role of Entropy Generation in Momentum and Heat Transfer
,”
ASME J. Heat Transfer
,
134
, p.
031003
.
8.
Yu
,
W.
,
France
,
D. M.
,
Smith
,
D. S.
,
Singh
,
D.
,
Timofeeva
,
E. V.
, and
Routbort
,
J. L.
, 2009, “
Heat Transfer to a Silicon Carbide/Water Nanofluid
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3606
3612
.
9.
Ahn
,
H. S.
, and
Kim
,
M. H.
, 2012, “
A Review on Critical Heat Flux Enhancement With Nanofluids and Surface Modification
,”
ASME J. Heat Transfer
,
134
, p.
024001
.
10.
Mohammadi
,
M.
,
Mohammadi
,
M.
, and
Shafii
,
M. B.
, 2012, “
Experimental Investigation of a Pulsating Heat Pipe Using Ferrofluid (Magnetic Nanofluid)
,”
ASME J. Heat Transfer
,
134
, p.
014504
.
11.
Qi
,
C.
,
He
,
Y.
,
Hu
,
Y.
,
Yang
,
J.
,
Li
,
F.
, and
Ding
,
Y.
, 2011, “
Natural Convection of Cu-Gallium Nanofluid in Enclosures
,”
ASME J. Heat Transfer
,
133
, p.
122504
.
12.
Krishna
,
K. H.
,
Ganapathy
,
H.
,
Sateesh
,
G.
, and
Das
,
S. K.
, 2011, “
Pool Boiling Characteristics of Metallic Nanofluids
,”
ASME J. Heat Transfer
,
133
, p.
111501
.
13.
Escher
,
W.
,
Brunschwiler
,
T.
,
Shalkevich
,
N.
,
Shalkevich
,
A.
,
Burgi
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
, 2011, “
On the Cooling of Electronics With Nanofluids
,”
ASME J. Heat Transfer
,
133
, p.
051401
.
14.
Ruan
,
B.
, and
Jacobi
,
A. M.
, 2011, “
Investigation on Intertube Falling-Film Heat Transfer and Mode Transitions of Aqueous-Alumina Nanofluids
,”
ASME J. Heat Transfer
,
133
, p.
051501
.
15.
Li
,
Q. M.
,
Zou
,
J.
,
Yang
,
Z.
,
Duan
,
Y. Y.
, and
Wang
,
B. X.
, 2011, “
Visualization of Two-Phase Flows in Nanofluid Oscillating Heat Pipes
,”
ASME J. Heat Transfer
,
133
, p.
052901
.
16.
Liu
,
D.
, and
Yu
,
L.
, 2011, “
Single-Phase Thermal Transport of Nanofluids in a Minichannel
,”
ASME J. Heat Transfer
,
133
, p.
031009
.
17.
Shin
,
D.
, and
Banerjee
,
D.
, 2011, “
Enhanced Specific Heat of Silica Nanofluid
,”
ASME J. Heat Transfer
,
133
, p.
024501
.
18.
Singh
,
P. K.
,
Harikrishna
,
P. V.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, 2011, “
Experimental and Numerical Investigation Into the Heat Transfer Study of Nanofluids in Microchannel
,”
ASME J. Heat Transfer
,
133
, p.
121701
.
19.
Fan
,
J.
, and
Wang
,
L.
, 2011, “
Review of Heat Conduction in Nanofluids
,”
ASME J. Heat Transfer
,
133
, p.
040801
.
20.
Seyf
,
H. R.
, and
Mohammadian
,
S. K.
, 2011, “
Thermal and Hydraulic Performance of Counterflow Microchannel Heat Exchangers With and Without Nanofluids
,”
ASME J. Heat Transfer
,
133
, p.
081801
.
21.
Qi
,
C.
,
He
,
Y.
,
Hu
,
Y.
,
Yang
,
J.
,
Li
,
F.
, and
Ding
,
Y.
, 2011, “
Natural Convection of Cu-Gallium Nanofluid in Enclosures
,”
ASME J. Heat Transfer
,
133
, p.
122504
.
22.
Khan
,
W. A.
, and
Pop
,
I.
, 2011, “
Free Convection Boundary Layer Flow Past a Horizontal Flat Plate Embedded in a Porous Medium Filled With a Nanofluid
,”
ASME J. Heat Transfer
,
133
, p.
094501
.
23.
Babu
,
K.
, and
Prasanna Kumar
,
T. S.
, 2011, “
Estimation and Analysis of Surface Heat Flux During Quenching in CNT Nanofluids
,”
ASME J. Heat Transfer
,
133
, p.
071501
.
24.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammad
,
H. A.
, 2011, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
, pp.
1646
1668
.
25.
Khanafer
,
K.
, and
Vafai
,
K.
, 2011, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
, pp.
4410
4428
.
26.
Sarkar
,
J.
, 2011, “
A Critical Review on Convective Heat Transfer Correlations of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
, pp.
3271
3277
.
27.
Singh
,
P. K.
,
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, 2010, “
Entropy Generation Due to Flow and Heat Transfer in Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4757
4767
.
28.
Li
,
J.
, and
Kleinstreuer
,
C.
, 2010, “
Entropy Generation Analysis for Nanofluid Flow in Microchannels
,”
ASME J. Heat Transfer
,
132
, p.
122401
.
29.
Feng
,
Y.
, and
Kleinstreuer
,
C.
, 2010, “
Nanofluid Convective Heat Transfer in a Parallel-Disk System
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4619
4628
.
30.
Moghaddami
,
M.
,
Mohammadzade
,
A.
, and
Varzane Esfehani
,
S. A.
, 2011, “
Second Law Analysis of Nanofluid Flow
,”
Energy Convers. Manage.
,
52
, pp.
1397
1405
.
31.
Shahi
,
M.
,
Mahmoudi
,
A. H.
, and
Raouf
,
A. H.
, 2011, “
Entropy Generation Due to Natural Convection Cooling of a Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
38
, pp.
972
983
.
32.
Esmaeilpour
,
M.
, and
Abdollahzadeh
,
M.
, 2012, “
Free Convection and Entropy Generation of Nanofluid Inside an Enclosure With Different Patterns of Vertical Wavy Walls
,”
Int. J. Thermal Sci.
,
52
, pp.
127
136
.
33.
Bianco
,
V.
,
Nardini
,
S.
, and
Manca
,
O.
, 2011, “
Enhancement of Heat Transfer and Entropy Generation Analysis of Nanofluids Turbulent Convection Flow in Square Section Tubes
,”
Nanoscale Res. Lett.
,
6
, pp.
252
263
.
34.
Mansour
,
R. B.
,
Galanis
,
N.
, and
Nguyen
,
C. T.
, 2007, “
Effect of Uncertainties in Physical Properties on Forced Convection Heat Transfer With Nanofluids
,”
Appl. Therm. Eng.
,
27
, pp.
240
249
.
35.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
, 2008, “
Effect of Thermophysical Properties Models on the Predicting of the Convective Heat Transfer Coefficient for Low Concentration Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
35
, pp.
1320
1326
.
36.
Fenot
,
M.
,
Bertin
,
Y.
,
Dorignac
,
E.
, and
Lalizel
,
G.
, 2011, “
A Review of Heat Transfer Between Concentric Rotating Cylinders With or Without Axial Flow
,”
Int. J. Therm. Sci.
,
50
, pp.
1138
1155
.
37.
Yilbas
,
B. S.
, 2001, “
Entropy Analysis of Concentric Annuli With Rotating Outer Cylinder
,”
Int. J. Exergy
,
1
, pp.
60
66
.
38.
Mahmud
,
S.
, and
Fraser
,
R. A.
, 2002, “
Second Law Analysis of Heat Transfer and Fluid Flow Inside a Cylindrical Annular Space
,”
Int. J. Exergy
,
2
, pp.
322
329
.
39.
Mahmud
,
S.
, and
Fraser
,
R. A.
, 2003, “
Analysis of Entropy Generation Inside Concentric Cylindrical Annuli With Relative Rotation
,”
Int. J. Therm. Sci.
,
42
, pp.
513
521
.
40.
Mirzazadeh
,
M.
,
Shafaei
,
A.
, and
Rashidi
,
F.
, 2008, “
Entropy Analysis for Non-Linear Viscoelastic Fluid in Concentric Rotating Cylinders
,”
Int. J. Therm. Sci.
,
47
, pp.
1701
1711
.
41.
Bruggeman
,
D. A. G.
, 1935, “
Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen
,”
Ann. Phys., Leipzig
,
24
, pp.
636
679
.
42.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundamentals
,
1
(
3
), pp.
187
191
.
43.
Yu
,
W.
, and
Choi
,
S. U. S.
, 2003, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
, pp.
167
171
.
44.
Brinkman
,
H. C.
, 1952, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
, pp.
571
581
.
45.
Maiga
,
S.
,
Palm
,
S. J.
,
Nguyen
,
C. T.
,
Roy
,
G.
, and
Galanis
,
N.
, 2005, “
Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows
,”
Int. J. Heat Fluid Flow
,
26
, pp.
530
546
.
46.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
, 1999, “
Thermal Conductivity of Nanoparticles-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
, pp.
474
480
.
47.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
, 1993, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles: Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles
,”
Netsu Bussei
,
7
(4), pp.
227
233
.
48.
Jiji
,
L. M.
, 2006,
Heat Convection
,
Springer-Verlag
,
Berlin
.
49.
White
,
F. M.
, 1974,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
50.
Paoletti
,
S.
,
Rispoli
,
F.
, and
Sciubba
,
E.
, 1980, “
Calculation of Exergetic Losses in Compact Heat Exchanger Passages
,”
ASME AES
,
10
, pp.
21
29
.
You do not currently have access to this content.