The lagging behavior is first exemplified by a rapidly stretched spring and a one-dimensional fin to illustrate the phase-lag concept via the thermal and mechanical properties that most engineers are familiar with. The second-order lagging model is then introduced to correlate with drug delivery in tumors and bioheat transfer that involve multiple carriers in heat/mass transport. Analytical expressions for the phase lags are derived, aiming toward revealing different physical origins for delays in different systems. For drug delivery in tumors involving nonequilibrium mass transport, the lagging behavior results from the finite time required for the rupture of liposome in releasing the antitumor drug and the finite time required for tumor cells to absorb drugs. For bioheat transfer involving nonequilibrium heat transport, on the other hand, the lagging behavior results from the finite time required for exchanging heat between tissue and blood. Pharmacodynamical and biological properties affecting the phase lags, as well as the dominating parameters over the lagging response are identified through the nondimensional analysis. Involvement of the thermal Mach number, which measures the speed of blood flow relative to the conventional thermal wave speed, is a new feature in this extension of the lagging model. The second-order effects in lagging are well correlated with the number of carriers involved in nonequilibrium heat and mass transport.

References

1.
Tzou
,
D. Y.
, 1995, “
A Unified Field Theory for Heat Conduction From Macro- to Micro-Scale
,”
ASME J. Heat Transfer
,
117
, pp.
8
16
.
2.
Tzou
,
D. Y.
, 1995, “
The Generalized Lagging Response in Small-Scale and High-Rate Heating
,”
Int. J. Heat Mass Transfer
,
38
, pp.
3231
3240
.
3.
Tzou
,
D. Y.
, 1995, “
Experimental Evidences for the Lagging Behavior in Heat Propagation
,”
AIAA J. Thermophys. Heat Transfer
,
9
, pp.
686
693
.
4.
Tzou
,
D. Y.
, 1997,
Macro- to Microscale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
Washington, DC
.
5.
Kaganov
,
M. I.
,
Lifshitz
,
I. M.
, and
Tanatarov
,
M. V.
, 1957, “
Relaxation Between Electrons and Crystalline Lattices
,”
Sov. Phys. JETP
,
4
, pp.
173
178
.
6.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perel’man
,
T. L.
, 1974, “
Electron Emission From Metal Surfaces Exposed to Ultra-Short Laser Pulses
,”
Sov. Phys. JETP
,
39
, pp.
375
377
.
7.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1992, “
Short-Pulse Laser Heating on Metals
,”
Int. J. Heat Mass Transfer
,
35
, pp.
719
726
.
8.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
,
115
, pp.
835
841
.
9.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1994, “
Femtosecond Laser Heating of Multi-Layered Metals—I. Analysis
,”
Int. J. Heat Mass Transfer
,
37
, pp.
2789
2797
.
10.
Qiu
,
T. Q.
,
Juhasz
,
T.
,
Suarez
,
C.
,
Bron
,
W. E.
, and
Tien
,
C. L.
, 1994, “
Femtosecond Laser Heating of Multi-Layered Metals—II. Experiments
,”
Int. J. Heat Mass Transfer
,
37
, pp.
2799
2808
.
11.
Goldman
,
C. H.
,
Norris
,
P. M.
, and
Tien
,
C. L.
, 1995, “
Picosecond Energy Transport by Fractons in Amorphous Materials
,”
ASME-JSME Thermal Engineering Conference
, Vol.
1
, pp.
467
473
.
12.
Tzou
,
D. Y.
, and
Chen
,
J. K.
, 1998, “
Thermal Lagging in Random Media
,”
AIAA J. Thermophys. Heat Transfer
,
12
, pp.
567
574
.
13.
Wang
,
L. Q.
,
Xu
,
M. T.
, and
Zhou
,
X. S.
, 2001, “
Well-Posedness and Solution Structure of Dual-Phase-Lagging Heat Equation
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1659
1669
.
14.
Wang
,
L. Q.
, and
Xu
,
M. T.
, 2002, “
Well-Posedness and Solution Structure of Dual-Phase-Lagging Heat Equation: Higher Dimensions
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1165
1171
.
15.
Wang
,
L. Q. Zhou, X. S.
, and
Wei
,
X. H.
, 2007,
Heat Conduction: Mathematical Models and Analytical Solutions
,
Springer-Verlag
,
Heidelberg
.
16.
Antaki
,
P. J.
, 1998, “
Solution for Non-Fourier Dual Phase Lag Heat Conduction in a Semi-Infinite Solid With Surface Heat Flux
,”
Int. J. Heat Mass Transfer
,
41
, pp.
2253
2258
.
17.
Jou
,
D.
, and
Criado-Sancho
,
M.
, and 1998,
Thermodynamic Stability and Temperature Overshooting in Dual-Phase-Lag Heat Transfer
, ”
Phys. Lett. A
,
248
, pp.
172
178
.
18.
Al-Huniti
,
N. S.
, and
Al-Nimr
,
M. A.
, 2004, “
Thermoelastic Behavior of a Composite Slab Under Rapid Dual-Phase-Lag Heating
,”
J. Therm. Stresses
,
27
, pp.
607
623
.
19.
Kulish
,
V. V.
, and
Novozhilov
,
V. B.
, 2004, “
An Integral Equation for the Dual-Lag Model of Heat Transfer
,”
ASME J. Heat Transfer
,
126
, pp.
805
808
.
20.
Ordóñez-Miranda
,
J.
, and
Alvarado-Gil
,
J. J.
, 2009, “
Determination of Time-Delay Parameters in the Dual-Phase Lagging Heat Conduction Model
,”
ASME J. Heat Transfer
,
132
, p.
061302
.
21.
Hader
,
M. A.
,
Al-Nimr
,
M. A.
, and
Abu Nabah
,
B. A.
, 2002, “
The Dual-Phase-Lag Heat Conduction Model in Thin Slabs Under a Fluctuating Volumetric Thermal Disturbance
,”
Int. J. Thermophys.
,
23
, pp.
1669
1680
.
22.
Quintanilla
,
R.
, and
Racke
,
R.
, 2006, “
A Note on Stability in Dual-Phase-Lag Heat Conduction
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1209
1213
.
23.
Su
,
S.
,
Dai
,
W.
,
Jordan
,
P. M.
, and
Mickens
,
R. E.
, 2005, “
Comparison of the Solutions of a Phase-Lagging Heat Transport Equation and Damped Wave Equation
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2233
2241
.
24.
Tang
,
D. W.
, and
Araki
,
N.
, 2000, “
Non-Fourier Heat Conduction Behavior in Finite Mediums Under Pulse Surface Heating
,”
Mat. Sci. Eng., A.
,
292
, pp.
173
178
.
25.
Tang
,
D. W.
, and
Arakia
,
N.
, 1999, “
Wavy, Wavelike, Diffusive Thermal Responses of Finite Rigid Slabs to High-Speed Heating of Laser-Pulses
,”
Int. J. Heat Mass Transfer
,
42
, pp.
855
860
.
26.
Dai
,
W.
, and
Nassar
,
R.
, 2002, “
An Approximate Analytic Method for Solving 1D Dual-Phase-Lagging Heat Transport Equations
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1585
1593
.
27.
Minkowycz
,
W. J.
,
Haji-Sheikh
,
A.
, and
Vafai
,
K.
, 1999, “
On Departure From Local Thermal Equilibrium in Porous Media Due to a Rapidly Changing Heat Source: The Sparrow Number
,”
Int. J. Heat Mass Transfer
,
42
, pp.
3373
3385
.
28.
Tzou
,
D. Y.
, 1991, “
The Resonance Phenomena in Thermal Waves
,”
Int. J. Eng. Sci.
,
29
, pp.
1167
1177
.
29.
Tzou
,
D. Y.
, 1992, “
Thermal Resonance Under Frequency Excitations
,”
ASME J. Heat Transfer
,
114
, pp.
310
316
.
30.
Tzou
,
D. Y.
, 1992, “
Damping and Resonance Characteristics of Thermal Waves
,”
ASME J. Appl. Mech.
,
59
, pp.
862
867
.
31.
Vadasz
,
P.
, 2005, “
Absence of Oscillations and Resonance in Porous Media Dual-Phase-Lagging Fourier Heat Conduction
,”
J. Heat Transfer
,
127
, pp.
307
314
.
32.
Vadasz
,
P.
, 2006, “
Heat Conduction in Nanofluid Suspensions
,”
ASME J. Heat Transfer
,
128
, pp.
465
477
.
33.
Wang
,
L. Q.
,
Xu
,
M. T.
, and
Wei
,
X. H.
, 2008, “
Multiscale Theorems
,”
Adv. Chem. Eng.
,
34
, pp.
175
468
.
34.
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2002, “
Thermal Oscillation and Resonance in Dual-Phase-Lagging Heat Conduction
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1055
1061
.
35.
Wang
,
L. Q.
, and
Wei
,
X. H.
, 2009, “
Nanofluids: Synthesis, Heat Conduction, and Extension
,”
ASME J. Heat Transfer
,
131
,
033102
.
36.
Antaki
,
P. J.
, 2005, “
New Interpretation of Non-Fourier Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer
,
127
, pp.
189
193
.
37.
Xu
,
L. X.
, and
Liu
,
J.
, 1998, “
Discussion of Non-Equilibrium Heat Transfer in Biological Systems
,”
Advances in Heat and Mass Transfer in Biotechnology
,
S.
,
Clegg
, ed.,
ASME HTD-Vol. 362/BED-Vol. 40
, pp.
13
17
.
38.
Zhou
,
J.
,
Chen
,
J. K.
, and
Zhang
,
Y. W.
, 2009, “
Dual-Phase Lag Effects on Thermal Damage to Biological Tissues Caused by Laser Irradiation
,”
Comput. Biol. Med.
,
39
, pp.
286
293
.
39.
Zhou
,
J.
,
Zhang
,
Y. W.
, and
Chen
,
J. K.
, 2009, “
An Axisymmetric Dual-Phase-Lag Bioheat Model for Laser Heating of Living Tissues
,”
Int. J. Therm. Sci.
,
48
, pp.
1477
1485
.
40.
Liu
,
K. C.
, and
Chen
,
H. T.
, 2009, “
Analysis for the Dual-Phase-Lag Bio-Heat Transfer During Magnetic Hyperthermia Treatment
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1185
1192
.
41.
Xu
,
F.
,
Lu
,
T. J.
,
Seffen
,
K. A.
, and
Ng
,
E. Y. K.
, 2009, “
Mathematical Modeling of Skin Bioheat Transfer
,”
Appl. Mech. Rev.
,
62
, p.
050801
.
42.
Tang
,
D. W.
, and
Araki
,
N.
, 2000, “
An Inverse Analysis to Estimate Relaxation Parameters and Thermal Diffusivity With a Universal Heat Conduction Equation
,”
Int. J. Thermophys.
,
22
, pp.
553
561
.
43.
Chen
,
J. K.
,
Beraun
,
J. E.
, and
Tzou
,
D. Y.
, 1999, “
A Dual-Phase-Lag Diffusion Model for Interfacial Layer Growth in Metal Matrix Composites
,”
J. Mater. Sci.
,
34
, pp.
6183
6187
.
44.
Chen
,
J. K.
,
Beraun
,
J. E.
, and
Tzou
,
D. Y.
, 2000, “
A Dual-Phase-Lag Diffusion Model for Predicting Thin Film Growth
,”
Semicond. Sci. Technol.
,
15
, pp.
235
241
.
45.
Chen
,
J. K. Beraun, J. E.
, and
Tzou
,
D. Y.
, 2001, “
A Dual-Phase-Lag Diffusion Model for Predicting Intermetallic Compound Layer Growth in Solder Joints
,”
ASME J. Electron. Packag.
,
123
, pp.
52
57
.
46.
Li
,
G. Y.
, and
Chen
,
B. L.
, 2003, “
Formation and Growth Kinetics of Interfacial Intermetallics in Pb-Free Solder Joint
,”
IEEE Trans. Compon. Packag. Technol.
,
26
, pp.
651
658
.
47.
Al-Nimr
,
M. A.
,
Naji
,
M.
, and
Arpaci
,
V. S.
, 2000, “
Nonequilibrium Entropy Production Under the Effect of the Dual-Phase-Lag Heat Conduction Model
,”
ASME J. Heat Transfer
,
122
, pp.
217
223
.
48.
Al-Nimr
,
M.
, and
Naji
,
M.
, 2000, “
On the Phase-Lag Effect on the Nonequilibrium Entropy Production
,”
Microscale Thermophys. Eng.
,
4
, pp.
231
243
.
49.
Serdyukov
,
S. I.
, 2001, “
A New Version of Extended Irreversible Thermodynamics and Dual-Phase-Lag Model in Heat Transfer
,”
Phys. Lett. A
,
281
, pp.
16
20
.
50.
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2005, “
Dual-Phase-Lagging Heat Conduction Based on Boltzmann Transport Equation
,”
Int. J. Heat Mass Transfer
,
48
, pp.
5616
5624
.
51.
Cheng
,
L.
,
Xu
,
M.
, and
Wang
,
L. Q.
, 2008, “
From Boltzmann Transport Equation to Single-Phase Lagging Heat Conduction
,”
Int. J. Heat Mass Transfer
,
51
, pp.
6018
6023
.
52.
Basirat
,
H.
,
Ghazanfarian
,
J.
, and
Forooghi
,
P.
, 2006, “
Implementation of Dual-Phase-Lag Model at Different Knudsen Numbers Within Slab Heat Transfer
,”
Proceedings of the International Conference on Modeling and Simulation (MS06)
,
Konia, Turkey
, pp.
895
899
.
53.
Ghazanfariana
,
J.
, and
Abbassi
,
A.
, 2009, “
Effect of Boundary Phonon Scattering on Dual-Phase-Lag Model to Simulate Micro- and Nano-Scale Heat Conduction
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3706
3711
.
54.
Tzou
,
D. Y.
, 2006, “
Computational Techniques in Microscale Heat Transfer
,”
Handbook of Numerical Heat Transfer
, 2nd ed.,
W. J.
,
Minkowycz
,
E. M.
,
Sparrow
, and
J. Y.
,
Murphy
, eds.,
Wiley
,
New York
, Chap. 20, pp.
623
657
.
55.
Liu
,
C. L.
, 2007, “
Numerical Analysis of Dual-Phase-Lag Heat Transfer in a Layered Cylinder With Nonlinear Interface Boundary Conditions
,”
Comput. Phys. Commun.
,
177
, pp.
307
314
.
56.
Liu
,
K. C.
, and
Chang
,
P. C.
, 2007, “
Analysis of Dual-Phase-Lag Heat Conduction in Cylindrical System With a Hybrid Method
,”
Appl. Math. Model.
,
31
, pp.
369
380
.
57.
Ramadan
,
K.
, 2009, “
Semi-Analytical Solutions for the Dual Phase Lag Heat Conduction in Multilayered Media
,”
Int. J. Therm. Sci.
,
48
, pp.
14
25
.
58.
Tzou
,
D. Y.
, 2008, “
Heat Propagation: Duality of Diffusion and Waves
,”
Panel on Dual-Phase-Lagging Heat Conduction, 1st ASME International Conference on Micro/Nanoscale Heat Transfer
, Jan. 6–9, 2008, Tainan, Taiwan.
59.
D. Y.
,
Tzou
, 2008, “
Thermal Lagging: Duality of Diffusion and Wave in Ultrafast Transient
,”
The 7th International Symposium on Heat Transfer
, Oct. 26–29, 2008,
Beijing, China
.
60.
Tzou
,
D. Y.
, and
Chiu
,
K. S.
, 2001, “
Temperature-Dependent Thermal Lagging in Ultrafast Laser Heating
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1725
1734
.
61.
Zhang
,
J.
, and
Zhao
,
J. J.
, 2001, “
Unconditionally Stable Finite Difference Scheme and Iterative Solution of 2D Microscale Heat Transport Equation
,”
J. Comput. Phys.
,
170
, pp.
261
257
.
62.
Ho
,
J. R.
,
Kuo
,
C. P.
, and
Jiaung
,
W. S.
, 2003, “
Study of Heat Transfer in Multilayered Structure Within the Framework of Dual-Phase-Lag Heat Conduction Model Using Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
46
, pp.
55
69
.
63.
Dai
,
W.
,
Shen
,
L.
,
Nassar
,
R.
, and
Zhu
,
T.
, 2004, ”
A Stable and Convergent Three-Level Finite Difference Scheme for Solving Dual-Phase-Lagging Heat Transport Equation in Spherical Coordinates
,”
Int. J. Heat Mass Transfer
,
47
, pp.
1817
1825
.
64.
Chou
,
Y.
, and
Yang
,
R. J.
, 2009, “
Two-dimensional Dual-Phase-Lag Thermal Behavior in Single-/Multi-layer Structures Using CESE Method
,”
Int. J. Heat Mass Transfer
,
52
, pp.
239
249
.
65.
McDonough
,
J. M.
,
Kunadian
,
I.
,
Kumar
,
R. R.
, and
Yang
,
T.
, 2006, “
An Alternative Discretization and Solution Procedure for the Dual Phase-Lag Equation
,”
J. Comput. Phys.
,
219
, pp.
163
171
.
66.
Hetnarski
,
R. B.
, and
Ignaczak
,
J.
, 1999, “
Generalized Thermoelasticity
,”
J. Therm. Stresses
,
22
, pp.
451
476
.
67.
Hetnarski
,
R. B.
, and
Ignaczak
,
J.
, 2000, “
Nonclassical Dynamical Thermoelasticity: A Review of Recent Literature
Int. J. Solids Struct.
,
37
, pp.
215
224
.
68.
El-Karamany
,
A. S.
, 2004, “
Maysel’s Formula in the Generalized Linear Micropolar Thermoviscoelasticity
,”
Arch. Mech.
,
56
, pp.
357
376
.
69.
Lee
,
J.
, and
Sheen
,
D.
, 2004, “
An Accurate Numerical Inversion of Laplace Transforms Based on the Location of Their Poles
,”
Comput. Math. Appl.
,
48
, pp.
1415
1423
.
70.
Youssef
,
H. M.
, and
Bassiouny
,
E.
, 2008, “
Two-Temperature Generalized Thermopiezoelasticity for One Dimensional Problems—State Space Approach
,”
Comput. Methods Sci. Technol.
,
14
, pp.
55
64
.
71.
Zhang
,
A.
,
Mi
,
X.
,
Yang
,
G.
, and
Xu
,
L. X.
, “
Numerical Study of Thermally Targeted Liposomal Drug Delivery in Tumor
,”
ASME J. Heat Transfer
,
131
,
043209
.
72.
Roetzel
,
W.
, and
Xuan
,
Y.
, 1998, “
Transient Response of the Human Limb to an External Stimulus
,”
Int. J. Heat Mass Transfer
,
41
, pp.
229
239
.
73.
Tzou
,
D. Y.
, and
Dai
,
W.
, 2009, “
Thermal Lagging in Multi-Carrier Systems
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1206
1213
.
74.
Dai
,
W.
, and
Tzou
,
D. Y.
, 2009, “
A Stable Finite Difference Scheme for Thermal Analysis in an N-Carrier System
,”
Int. J. Thermal Sci.
,
48
, pp.
1530
1541
.
75.
Ahn
,
K. T.
,
Cho
,
J. S.
,
Chung
,
W. K.
, 2006, “
Discrete Trajectory Formation in Comparison With the Analytical Method for Smooth Movements
,”
IEEE Xplore Digital Library
, pp.
4462
4467
. Available at http://ieeexplore.ieee.orghttp://ieeexplore.ieee.org.
76.
Flugge
,
W.
, 1975,
Viscoelasticity
,
Springer-Verlag
,
New York
.
77.
Cao
,
B. Y
, and
Guo
,
Z. Y.
2007, “
Equation of Motion of a Phonon Gas and Non-Fourier Heat Conduction
,”
J. Appl. Phys.
,
102
, p.
053503
.
78.
Wang
,
H. D.
,
Cao
,
B. Y.
, and
Guo
,
Z. Y.
, 2010, “
Heat Flow Choking in Carbon Nanotubes
,”
Int. J. Heat Mass Transfer
,
53
, pp.
1796
1800
.
You do not currently have access to this content.