This paper deals with the analysis of the main features of forced microconvection of liquid and gas flows through microchannels. A critical overview of the main effects that tends to play an important role in the determination of Nusselt number in microchannels is presented. Some experimental data obtained at the Microfluidics Lab of the University of Bologna together with the main results which appeared recently in the open literature both for liquids and gases are used in order to highlight the peculiar characteristics of the convective heat transfer through microchannels and to suggest the guidelines for a physically based interpretation to the experimental results. By means of specific examples, it is shown that the thermal behavior at microscale of gas and liquid flows through microchannels in terms of convective heat transfer coefficients can be strongly affected by scaling and micro-effects but also by practical issues linked to the geometry of the test rig, the real thermal boundary conditions, the presence of fittings, position and type of the sensors, and so on. All these aspects have to be taken into account during the data post processing in order to obtain a correct evaluation of the Nusselt numbers. It is also highlighted how it is always useful to couple to the experimental approach a complete computational thermal fluid-dynamics analysis of the whole tested microsystem in order to be able to recognize “a priori” the main effects which can play an important role on the convective heat transfer analysis. It is demonstrated in this paper that this “a priori” analysis is crucial in order to: (i) individuate the main parameters which influence the convective heat transfer coefficients (this is important for the development of new correlations); (ii) compare in a right way the conventional correlations with the experimental results.

References

1.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
, pp.
631
651
.10.1016/j.ijthermalsci.2004.01.003
2.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Yarin
,
L. P.
,
2005
, “
Heat Transfer in Micro-Channels: Comparison of Experiments With Theory and Numerical Results
,”
Int. J. Heat Mass Transfer
,
48
, pp.
5580
5601
.10.1016/j.ijheatmasstransfer.2005.05.041
3.
Dey
,
R.
,
Das
,
T.
, and
Chakraborthy
,
S.
,
2012
, “
Frictional and Heat Transfer Characteristics of Single-Phase Microchannel Liquid Flows
,”
Heat Transfer Eng.
,
33
, pp.
425
446
.10.1080/01457632.2012.614153
4.
Kandlikar
,
S. G.
,
2012
, “
History, Advances and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
, p.
034001
.10.1115/1.4005126
5.
Poiseuille
,
J. M.
,
1840
, “
Recherches Expérimentales sur le Mouvement des liquides dans les Tubes de très petits diamètres
,”
C. R. Hebd. Seances Acad. Sci.
,
11
, pp.
961
967
and 1041–1048.
6.
Peng
,
X. F.
, and
Peterson
,
G. P.
,
1996
, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
,
39
, pp.
2599
2608
.10.1016/0017-9310(95)00327-4
7.
Wu
,
P.
, and
Little
,
W. A.
,
1984
, “
Measurement of the Heat Transfer Characteristics of Gas Flow in Fine Channel Heat Exchangers Used for Microminiature
,”
Cryogenics
,
24
, pp.
415
420
.10.1016/0011-2275(84)90015-8
8.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
,
1991
, “
Fluid Flow and Heat Transfer in Microtubes
,”
Micromechanical Sensors, Actuators and Systems, ASME DSC 32
,
Atlanta, GA
, pp.
123
134
.
9.
Yu
,
D.
,
Warrington
,
R. O.
,
Barron
,
R.
, and
Ameel
,
T.
,
1995
, “
An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes
,”
Proceedings of ASME/JSME Thermal Engineering Joint Conference
,
Maui, HI
.
10.
Khan
,
M. N.
,
Islam
,
M.
, and
Hasan
,
M. M.
,
2011
, “
Experimental Investigation of Fluid Flow and Heat Transfer in Circular Microchannels
,”
Int. Rev. Mech. Eng.
,
5
, pp.
1144
1150
.
11.
Demsis
,
A.
,
Verma
,
B.
,
Prabhu
,
S. V.
, and
Agrawal
,
A.
,
2010
, “
Heat Transfer Coefficient of Gas Flowing in a Circular Tube Under Rarefied Condition
,”
Int. J. Therm. Sci.
,
49
, pp.
1994
1999
.10.1016/j.ijthermalsci.2010.05.018
12.
Park
,
H.
,
2009
, “
A Microchannel Heat Exchanger Design for Microelectronics Cooling Correlating the Heat Transfer Rate in Terms of Brinkman Number
,”
Microsyst. Technol.
,
15
, pp.
1373
1378
.10.1007/s00542-009-0900-8
13.
Mun
,
J. H.
, and
Kim
,
S. C.
,
2011
,
“Study on Heat Transfer Characteristics for Single-Phase Flow in Rectangular Microchannels,”
Trans Korean Soc. Mech. Eng. B
,
35
, pp.
891
896
.10.3795/KSME-B.2011.35.9.891
14.
Herwig
,
H.
, and
Hausner
,
O.
,
2003
, “
Critical View on “New Results in Micro-Fluid Mechanics”: An Example
,
Int. J. Heat Mass Transfer
,
46
, pp.
935
937
.10.1016/S0017-9310(02)00306-X
15.
Morini
,
G. L.
,
2006
, “
Scaling Effects for Liquid Flows in Microchannels
,”
Heat Transfer Eng.
,
27
, pp.
64
73
.10.1080/01457630500523865
16.
Rosa
,
P.
,
Karayiannis
,
T. G.
, and
Collins
,
M. W.
,
2009
, “
Single-Phase Heat Transfer in Microchannels: The Importance of Scaling Effects
,”
Appl. Therm. Eng.
,
29
, pp.
3447
3468
.10.1016/j.applthermaleng.2009.05.015
17.
Guo
,
Z. Y.
, and
Li
,
Z. X.
,
2003
, “
Size Effect on Microscale Single-Phase Flow and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
46
, pp.
149
159
.10.1016/S0017-9310(02)00209-0
18.
Li
,
C.
,
Jia
,
L.
, and
Zhang
,
T.
,
2009
, “
The Entrance Effect on Gases Flow Characteristics in Micro-Tube
,”
J. Therm. Sci.
,
18
, pp.
353
357
.10.1007/s11630-009-0353-5
19.
Morini
,
G. L.
,
Lorenzini
,
M.
,
Colin
,
S.
, and
Geoffroy
,
S.
,
2007
, “
Experimental Analysis of Pressure Drop and Laminar to Turbulent Transition for Gas Flows in Microtubes
,”
Heat Transfer Eng.
,
28
, pp.
670
679
.10.1080/01457630701326308
20.
Morini
,
G. L.
, and
Spiga
,
M.
,
2007
, “
The Role of Viscous Dissipation in Heated Microchannels
,”
ASME J. Heat Transfer
,
129
, pp.
308
318
.10.1115/1.2430725
21.
Mohorana
,
M. K.
,
Agarwal
,
G.
, and
Khandekar
,
S.
,
2011
, “
Axial Conduction in Single-Phase Simultaneously Developing Flow in a Rectangular Mini-Channel Array
,”
Int. J. Therm. Sci.
,
50
, pp.
1001
1012
.10.1016/j.ijthermalsci.2011.01.017
22.
Lin
,
T.-Y.
, and
Kandlikar
,
S. G.
,
2012
, “
A Theoretical Model for Axial Heat Conduction Effects During Single-Phase Flow in Microchannels
,”
ASME J. Heat Transfer
,
134
, p.
020902
.10.1115/1.4004936
23.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
,
2004
, “
Mini- and Micro-Channels Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
,
47
, pp.
3993
4004
.10.1016/j.ijheatmasstransfer.2004.04.016
24.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
, Laminar Flow Forced Convection in Ducts (Advances in Heat Transfer), Academic Press, New York.
25.
Gamrat
,
G.
,
Favre-Marinet
,
M.
, and
Le Person
,
S.
,
2009
, “
Modelling of Roughness Effects on Heat Transfer in Thermally Fully-Developed Laminar Flows Through Microchannels
,”
Int. J. Therm. Sci.
,
48
, pp.
2203
2214
.10.1016/j.ijthermalsci.2009.04.006
26.
Croce
,
G.
,
D'Agaro
,
P.
, and
Nonino
,
C.
,
2007
, “
Three-Dimensional Roughness Effect on Microchannel Heat Transfer and Pressure Drop
,”
Int. J. Heat Mass Transfer
,
50
, pp.
5249
5259
.10.1016/j.ijheatmasstransfer.2007.06.021
27.
Lin
,
T.-Y.
, and
Kandlikar
,
S. G.
,
2012
, “
An Experimental Investigation of Structured Roughness Effect on Heat Transfer During Single-Phase Liquid Flow at Microscale
,”
ASME J. Heat Transfer
,
134
, p.
101701
.10.1115/1.4006844
28.
Colin
,
S.
,
2012
, “
Gas Microflows in the Slip Flow Regime: A Review on Heat Transfer
,”
ASME J. Heat Transfer
,
134
(
2
), p.
020908
.10.1115/1.4005063
29.
Ren
,
C. L.
,
Qu
,
W.
, and
Li
,
D.
,
2001
, “
Interfacial Electrokinetic Effects on Liquid Flow in Microchannels
,”
Int. J. Heat Mass Transfer
,
44
, pp.
3125
3134
.10.1016/S0017-9310(00)00339-2
30.
Maynes
,
D.
, and
Webb
,
B. W.
,
2003
, “
Fully Developed Electro-Osmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
46
, pp.
1359
1369
.10.1016/S0017-9310(02)00423-4
31.
Herwig
,
H.
, and
Mahulikar
,
S. P.
,
2006
, “
Variable Property Effects in Single-Phase Incompressible Flows Through Microchannels
,”
Int. J. Therm. Sci.
,
45
, pp.
977
981
.10.1016/j.ijthermalsci.2006.01.002
32.
Gulhane
,
N. P.
, and
Mahulikar
,
S. P.
,
2010
, “
Numerical Study of Compressible Convective Heat Transfer With Variations in all Fluid Properties
,”
Int. J. Therm. Sci.
,
49
, pp.
786
796
.10.1016/j.ijthermalsci.2009.11.001
33.
Gnielinski
,
V.
,
1995
,
„Ein Neues Berechnungsverfahren fur die Warmeubertragung im Ubergangsbereich zwischen Laminaren und Turbulenter Rohstromung
,”
Forsch. Ingenieurwes. Eng. Res.
,
61
, pp.
240
248
.10.1007/BF02607964
34.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
“Heat Transfer in Automobile Radiators of the Tubular type
,” Vol. 2,
University of California Publications on Engineering
,
Berkeley, CA
, p.
433
.
35.
Sieder
,
E. N.
, and
Tate
,
G. E.
,
1936
, “
Heat Transfer and Pressure Drop of Liquids in Tubes
,”
Ind. Eng. Chem.
,
28
, pp.
1429
1439
.10.1021/ie50324a027
36.
Morini
,
G. L.
,
Lorenzini
,
M.
,
Salvigni
,
S.
, and
Celata
,
G. P.
,
2010
, “
Experimental Analysis of the Microconvective Heat Transfer in the Laminar and Transition Regions
,”
Exp. Heat Transfer
,
23
, pp.
73
93
.10.1080/08916150903402757
37.
Morini
,
G. L.
,
Yang
,
Y.
, and
Lorenzini
,
M.
,
2012
, “
Experimental Analysis of Gas Micro-Convection Through Commercial Microtubes
,”
Exp. Heat Transfer
,
25
, pp.
151
171
.10.1080/08916152.2011.609960
38.
Mori
,
S.
,
Sakakibara
,
M.
, and
Tanimoto
,
A.
,
1974
, “
Steady Heat Transfer to Laminar Flow in a Circular Tube With Conduction in the Tube Wall
,”
Heat Transfer-Jpn. Res.
,
3
, pp.
37
46
.
39.
Tso
,
C. P.
, and
Mahulikar
,
S. P.
,
2000
, “
Experimental Verification of the Role of Brinkman Number in Microchannels Using Local Parameters
,”
Int. J. Heat Mass Transfer
,
43
, pp.
1837
1849
.10.1016/S0017-9310(99)00241-0
40.
Hong
,
C.
,
Yamamoto
,
T.
,
Asako
,
Y.
, and
Suzuki
,
K.
,
2012
, “
Heat Transfer Characteristics of Compressible Laminar Flow Through Microtubes
,”
ASME J. of Heat Transfer
,
134
, p.
011602
.10.1115/1.4004645
You do not currently have access to this content.