This study investigates heat dissipation at carbon nanotube (CNT) junctions supported on silicon dioxide substrate using molecular dynamics simulations. The temperature rise in a CNT (∼top CNT) not making direct contact with the oxide substrate but only supported by other CNTs (∼bottom CNT) is observed to be hundreds of degree higher compared with the CNTs well-contacted with the substrate at similar power densities. The analysis of spectral temperature decay of CNT-oxide system shows very fast intratube energy transfer in a CNT from high-frequency band to intermediate-frequency bands. The low frequency phonon band (0–5 THz) of top CNT shows two-stage energy relaxation which results from the efficient coupling of low frequency phonons in the CNT-oxide system and the blocking of direct transport of high- and intermediate-frequency phonons of top CNT to the oxide substrate by bottom CNT.

References

1.
Baughman
,
R. H.
,
Zakhidov
,
A. A.
, and
de Heer
,
W. A.
,
2002
, “
Carbon Nanotubes—The Route Toward Applications
,”
Science
,
297
(
5582
), pp.
787
792
.10.1126/science.1060928
2.
Reuss
,
R. H.
,
Chalamala
,
B. R.
,
Moussessian
,
A.
,
Kane
,
M. G.
,
Kumar
,
A.
,
Zhang
,
D. C.
,
Rogers
,
J. A.
,
Hatalis
,
M.
,
Temple
,
D.
,
Moddel
,
G.
,
Eliasson
,
B. J.
,
Estes
,
M. J.
,
Kunze
,
J.
,
Handy
,
E. S.
,
Harmon
,
E. S.
,
Salzman
,
D. B.
,
Woodall
,
J. M.
,
Alam
,
M. A.
,
Murthy
,
J. Y.
,
Jacobsen
,
S. C.
,
Olivier
,
M.
,
Markus
,
D.
,
Campbell
,
P. M.
, and
Snow
,
E.
,
2005
, “
Macroelectronics: Perspectives on Technology and Applications
,”
Proc. IEEE
,
93
(
7
), pp.
1239
1256
.10.1109/JPROC.2005.851237
3.
Cao
,
Q.
, and
Rogers
,
J. A.
,
2009
, “
Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects
,”
Adv. Mater.
,
21
(
1
), pp.
29
53
.10.1002/adma.200801995
4.
Novak
,
J. P.
,
Snow
,
E. S.
,
Houser
,
E. J.
,
Park
,
D.
,
Stepnowski
,
J. L.
, and
McGill
,
R. A.
,
2003
, “
Nerve Agent Detection Using Networks of Single-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
,
83
(
19
), pp.
4026
4028
.10.1063/1.1626265
5.
Snow
,
E. S.
,
Novak
,
J. P.
,
Lay
,
M. D.
,
Houser
,
E. H.
,
Perkins
,
F. K.
, and
Campbell
,
P. M.
,
2004
, “
Carbon Nanotube Networks: Nanomaterial for Macroelectronic Applications
,”
J. Vac. Sci. Technol. B
,
22
(
4
), pp.
1990
1994
.10.1116/1.1768185
6.
Kim
,
S.
,
Kim
,
S.
,
Park
,
J.
,
Ju
,
S.
, and
Mohammadi
,
S.
,
2010
, “
Fully Transparent Pixel Circuits Driven by Random Network Carbon Nanotube Transistor Circuitry
,”
ACS Nano
,
4
(
6
), pp.
2994
2998
.10.1021/nn1006094
7.
Kim
,
S.
,
Ju
,
S.
,
Back
,
J. H.
,
Xuan
,
Y.
,
Ye
,
P. D.
,
Shim
,
M.
,
Janes
,
D. B.
, and
Mohammadi
,
S.
,
2009
, “
Fully Transparent Thin-Film Transistors Based on Aligned Carbon Nanotube Arrays and Indium Tin Oxide Electrodes
,”
Adv. Mater.
,
21
(
5
), pp.
564
568
.10.1002/adma.200801032
8.
Valletta
,
A.
,
Moroni
,
A.
,
Mariucci
,
L.
,
Bonfiglietti
,
A.
, and
Fortunato
,
G.
,
2006
, “
Self-Heating Effects in Polycrystalline Silicon Thin Film Transistors
,”
Appl. Phys. Lett.
,
89
(
9
), p.
093509
.10.1063/1.2337108
9.
Kumar
,
S.
,
Pimparkar
,
N.
,
Murthy
,
J. Y.
, and
Alam
,
M. A.
,
2011
, “
Self-Consistent Electrothermal Analysis of Nanotube Network Transistors
,”
J. Appl. Phys.
,
109
(
1
), p.
014315
.10.1063/1.3524209
10.
Pop
,
E.
,
Mann
,
D.
,
Wang
,
Q.
,
Goodson
,
K.
, and
Dai
,
H. J.
,
2006
, “
Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature
,”
Nano Lett.
,
6
(
1
), pp.
96
100
.10.1021/nl052145f
11.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
,
2001
, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
,
87
(
21
), p.
215502
.10.1103/PhysRevLett.87.215502
12.
Maune
,
H.
,
Chiu
,
H. Y.
, and
Bockrath
,
M.
,
2006
, “
Thermal Resistance of the Nanoscale Constrictions Between Carbon Nanotubes and Solid Substrates
,”
Appl. Phys. Lett.
,
89
(
1
), p.
013109
.10.1063/1.2219095
13.
Tsai
,
C. L.
,
Liao
,
A.
,
Pop
,
E.
, and
Shim
,
M.
,
2011
, “
Electrical Power Dissipation in Semiconducting Carbon Nanotubes on Single Crystal Quartz and Amorphous SiO2
,”
Appl. Phys. Lett.
,
99
(
5
), p.
053120
.10.1063/1.3622769
14.
Ong
,
Z. Y.
, and
Pop
,
E.
,
2010
, “
Frequency and Polarization Dependence of Thermal Coupling Between Carbon Nanotubes and SiO2
,”
J. Appl. Phys.
,
108
(
10
), p.
103502
.10.1063/1.3484494
15.
Pop
,
E.
,
Mann
,
D. A.
,
Goodson
,
K. E.
, and
Dai
,
H. J.
,
2007
, “
Electrical and Thermal Transport in Metallic Single-Wall Carbon Nanotubes on Insulating Substrates
,”
J. Appl. Phys.
,
101
(
9
), p.
093710
.10.1063/1.2717855
16.
Liao
,
A.
,
Alizadegan
,
R.
,
Ong
,
Z. Y.
,
Dutta
,
S.
,
Xiong
,
F.
,
Hsia
,
K. J.
, and
Pop
,
E.
,
2010
, “
Thermal Dissipation and Variability in Electrical Breakdown of Carbon Nanotube Devices
,”
Phys. Rev. B
,
82
(
20
), p.
205406
.10.1103/PhysRevB.82.205406
17.
Ong
,
Z. Y.
, and
Pop
,
E.
,
2010
, “
Molecular Dynamics Simulation of Thermal Boundary Conductance Between Carbon Nanotubes and SiO2
,”
Phys. Rev. B
,
81
(
15
), p.
155408
.10.1103/PhysRevB.81.155408
18.
Ong
,
Z. Y.
,
Pop
,
E.
, and
Shiomi
,
J.
,
2011
, “
Reduction of Phonon Lifetimes and Thermal Conductivity of a Carbon Nanotube on Amorphous Silica
,”
Phys. Rev. B
,
84
(
16
), p.
165418
.10.1103/PhysRevB.84.165418
19.
Grujicic
,
M.
,
Cao
,
G.
, and
Gersten
,
B.
,
2004
, “
Atomic-Scale Computations of the Lattice Contribution to Thermal Conductivity of Single-Walled Carbon Nanotubes
,”
Mater. Sci. Eng., B
,
107
(
2
), pp.
204
216
.10.1016/j.mseb.2003.11.012
20.
Xu
,
Z. P.
, and
Buehler
,
M. J.
,
2009
, “
Nanoengineering Heat Transfer Performance at Carbon Nanotube Interfaces
,”
Acs Nano
,
3
(
9
), pp.
2767
2775
.10.1021/nn9006237
21.
Yang
,
J. K.
,
Waltermire
,
S.
,
Chen
,
Y. F.
,
Zinn
,
A. A.
,
Xu
,
T. T.
, and
Li
,
D. Y.
,
2010
, “
Contact Thermal Resistance Between Individual Multiwall Carbon Nanotubes
,”
Appl. Phys. Lett.
,
96
(
2
), p.
023109
.10.1063/1.3292203
22.
Chalopin
,
Y.
,
Volz
,
S.
, and
Mingo
,
N.
,
2009
, “
Upper Bound to the Thermal Conductivity of Carbon Nanotube Pellets
,”
J. Appl. Phys.
,
105
(
8
), p.
084301
.10.1063/1.3088924
23.
Zhong
,
H. L.
, and
Lukes
,
J. R.
,
2006
, “
Interfacial Thermal Resistance Between Carbon Nanotubes: Molecular Dynamics Simulations and Analytical Thermal Modeling
,”
Phys. Rev. B
,
74
(
12
), p.
125403
.10.1103/PhysRevB.74.125403
24.
Prasher
,
R. S.
,
Hu
,
X. J.
,
Chalopin
,
Y.
,
Mingo
,
N.
,
Lofgreen
,
K.
,
Volz
,
S.
,
Cleri
,
F.
, and
Keblinski
,
P.
,
2009
, “
Turning Carbon Nanotubes From Exceptional Heat Conductors Into Insulators
,”
Phys. Rev. Lett.
,
102
(
10
), p.
105901
.10.1103/PhysRevLett.102.105901
25.
Estrada
,
D.
, and
Pop
,
E.
,
2011
, “
Imaging Dissipation and Hot Spots in Carbon Nanotube Network Transistors
,”
Appl. Phys. Lett.
,
98
(
7
), p.
073102
.10.1063/1.3549297
26.
Chen
,
L.
, and
Kumar
,
S.
,
2011
, “
Thermal Transport in Double-Wall Carbon Nanotubes Using Heat Pulse
,”
J. Appl. Phys.
,
110
(
7
), p.
074305
.10.1063/1.3641970
27.
Kumar
,
S.
, and
Murthy
,
J. Y.
,
2009
, “
Interfacial Thermal Transport Between Nanotubes
,”
J. Appl. Phys.
,
106
(
8
), p.
084302
.10.1063/1.3245388
28.
Osman
,
M. A.
, and
Srivastava
,
D.
,
2005
, “
Molecular Dynamics Simulation of Heat Pulse Propagation in Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
,
72
(
12
), p.
125413
.10.1103/PhysRevB.72.125413
29.
Shiomi
,
J.
, and
Maruyama
,
S.
,
2006
, “
Non-Fourier Heat Conduction in a Single-Walled Carbon Nanotube: Classical Molecular Dynamics Simulations
,”
Phys. Rev. B
,
73
(
20
), p.
205420
.10.1103/PhysRevB.73.205420
30.
Diao
,
J.
,
Srivastava
,
D.
, and
Menon
,
M.
,
2008
, “
Molecular Dynamics Simulations of Carbon Nanotube/Silicon Interfacial Thermal Conductance
,”
J. Chem. Phys.
,
128
(
16
), p.
164708
.10.1063/1.2905211
31.
Thomas
,
J. A.
,
Iutzi
,
R. M.
, and
McGaughey
,
A. J. H.
,
2010
, “
Thermal Conductivity and Phonon Transport in Empty and Water-Filled Carbon Nanotubes
,”
Phys. Rev. B
,
81
(
4
), p.
045413
.10.1103/PhysRevB.81.045413
32.
Carlborg
,
C. F.
,
Shiomi
,
J.
, and
Maruyama
,
S.
,
2008
, “
Thermal Boundary Resistance Between Single-Walled Carbon Nanotubes and Surrounding Matrices
,”
Phys. Rev. B
,
78
(
20
), p.
205406
.10.1103/PhysRevB.78.205406
33.
Gupta
,
M. P.
,
Chen
,
L.
,
Estrada
,
D.
,
Behnam
,
A.
,
Pop
,
E.
, and
Kumar
,
S.
,
2012
, “
Impact of Thermal Boundary Conductances on Power Dissipation and Electrical Breakdown of Carbon Nanotube Network Transistors
,”
J. Appl. Phys.
,
112
(
12
), p.
124506
.10.1063/1.4767920
34.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.10.1063/1.1524305
35.
Maruyama
,
S.
,
2002
, “
A Molecular Dynamics Simulation of Heat Conduction in Finite Length SWNTs
,”
Physica B
,
323
(
1–4
), pp.
193
195
.10.1016/S0921-4526(02)00898-0
36.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular-Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
37.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.10.1063/1.481208
38.
Munetoh
,
S.
,
Motooka
,
T.
,
Moriguchi
,
K.
, and
Shintani
,
A.
,
2007
, “
Interatomic Potential for Si-O Systems Using Tersoff Parameterization
,”
Comput. Mater. Sci.
,
39
(
2
), pp.
334
339
.10.1016/j.commatsci.2006.06.010
39.
Rappe
,
A. K.
,
Casewit
,
C. J.
,
Colwell
,
K. S.
,
Goddard
,
W. A.
, and
Skiff
,
W. M.
,
1992
, “
UFF, a Full Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations
,”
J. Am. Chem. Soc.
,
114
(
25
), pp.
10024
10035
.10.1021/ja00051a040
40.
Varshney
,
V.
,
Patnaik
,
S. S.
,
Roy
,
A. K.
, and
Farmer
,
B. L.
,
2010
, “
Modeling of Thermal Conductance at Transverse CNT-CNT Interfaces
,”
J. Phys. Chem. C
,
114
(
39
), pp.
16223
16228
.10.1021/jp104139x
You do not currently have access to this content.