This work deals with numerical simulation of a hyperthermia treatment of skin cancer as a state estimation problem, where uncertainties in the evolution and measurement models, as well as in the measured data, are accounted for. A reduced model is adopted, based on a coarse mesh for the solution of the partial differential equations that describe the physical problem, in order to expedite the solution of the state estimation problem with a particle filter algorithm within the Bayesian framework of statistics. The so-called approximation error model (AEM) is used in order to statistically compensate for model reduction effects. The Liu and West algorithm of the particle filter, together with the AEM, is shown to provide accurate estimates for the temperature and model parameters in a multilayered region containing a tumor loaded with nanoparticles. Simulated transient temperature measurements from one sensor are used in the analysis.

References

1.
Arulampalam
,
M. S.
,
Maskell
,
S.
,
Gordon
,
N.
, and
Clapp
,
T.
,
2002
, “
A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking
,”
IEEE Trans. Signal Process.
,
50
(
2
), pp.
174
188
.
2.
Ristic
,
B.
,
Arulampalam
,
S.
, and
Gordon
,
N.
,
2004
,
Beyond the Kalman Filter
,
Artech House
,
Boston, MA
.
3.
Doucet
,
A.
,
de Freitas
,
N.
, and
Gordon
,
N.
,
2001
,
Sequential Monte Carlo Methods in Practice
,
Springer
,
New York
.
4.
Liu
,
J.
, and
West
,
M.
,
2001
, “
Combined Parameter and State Estimation in Simulation-Based Filtering
,”
Sequential Monte Carlo Methods in Practice
,
A.
Doucet
,
N.
de Freitas
, and
N.
Gordon
, eds.,
Springer
,
New York
.
5.
Sheinson
,
D. M.
,
Niemi
,
J.
, and
Meiring
,
W.
,
2014
, “
Comparison of the Performance of Particle Filter Algorithms Applied to Tracking of a Disease Epidemic
,”
Math. Biosci.
,
255
, pp.
21
32
.
6.
Lopes
,
H. F.
, and
Carvalho
,
C. M.
,
2013
, “
Online Bayesian Learning in Dynamic Models: An Illustrative Introduction to Particle Methods
,”
Bayesian Theory and Applications
,
P.
Damien
,
P.
Dellaportas
,
N. G.
Polson
, and
D. A.
Stephens
, eds.,
Oxford Press University
,
Oxford, UK
.
7.
Smal
,
I.
,
Niessen
,
W. J.
,
Demirel
,
O.
,
Meijering
,
E.
, and
Sbalzarini
,
I. F.
,
2014
, “
PPF: A Parallel Particle Filtering Library
,”
IET
Conference on Data Fusion and Target Tracking 2014: Algorithms and Applications
, Apr. 30.
8.
Chitchian
,
M.
,
Simonetto
,
A.
,
van Amesfoort
,
A. S.
, and
Keviczky
,
T.
,
2013
, “
Distributed Computation Particle Filters on GPU Architectures for Real-Time Control Applications
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
2224
2238
.
9.
Goodrum
,
M. A.
,
Trotter
,
M. J.
,
Aksel
,
A.
,
Acton
,
S. T.
, and
Skadron
,
K.
,
2012
, “
Parallelization of Particle Filter Algorithms
,”
Computer Architecture
(Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, Vol. 6161)),
Springer-Verlag
,
Berlin
, pp.
139
149
.
10.
Brown
,
J. A.
, and
Capson
,
D. W.
,
2012
, “
A Framework for 3D Model-Based Visual Tracking Using a GPU-Accelerated Particle Filter
,”
IEEE Trans. Visualization Comput. Graphics
,
18
(
1
), pp.
68
80
.
11.
Lamien
,
B.
,
Orlande
,
H. R. B.
,
Eliçabe
,
G. E.
, and
Maurente
,
A. J.
,
2014
, “
State Estimation Problem in Hyperthermia Treatment of Tumors Loaded With Nanoparticles
,”
15th International Heat Transfer Conference
, Kyoto, Japan.
12.
Kaipio
,
J. P.
, and
Somersalo
,
E.
,
2004
, Statistical and Computational Inverse Problems (Applied Mathematical Sciences, Vol. 160),
Springer-Verlag
,
New York
.
13.
Kaipio
,
J. P.
, and
Somersalo
,
E.
,
2007
, “
Statistical Inverse Problems: Discretization, Model Reduction and Inverse Crimes
,”
J. Comput. Appl. Math.
,
198
(
2
), pp.
493
504
.
14.
Nissinen
,
A.
,
Heikkinen
,
L. M.
, and
Kaipio
,
J. P.
,
2008
, “
The Bayesian Approximation Error Approach for Electrical Impedance Tomography—Experimental Results
,”
Meas. Sci. Technol.
,
19
(
1
), p.
015501
.
15.
Nissinen
,
A.
,
Heikkinen
,
L. M.
,
Kolehmainen
,
V.
, and
Kaipio
,
J. P.
,
2009
, “
Compensation of Errors Due to Discretization, Domain Truncation and Unknown Contact Impedances in Electrical Impedance Tomography
,”
Meas. Sci. Technol.
,
20
(
10
), p.
105504
.
16.
Nissinen
,
A.
,
2011
, “
Modelling Errors in Electrical Impedance Tomography
,”
Ph.D. thesis
, University of Eastern Finland, Kuopio, Finland.http://epublications.uef.fi/pub/urn_isbn_978-952-61-0428-7/urn_isbn_978-952-61-0428-7.pdf
17.
Nissinen
,
A.
,
Kolehmainen
,
V. P.
, and
Kaipio
,
J. P.
,
2011
, “
Compensation of Modelling Errors Due to Unknown Domain Boundary in Electrical Impedance Tomography
,”
IEEE Trans. Med. Imaging
,
30
(
2
), pp.
231
242
.
18.
Mozumder
,
M.
,
Tarvainen
,
T.
,
Kaipio
,
J. P.
,
Arridge
,
S. R.
, and
Kolehmainen
,
V.
,
2014
, “
Compensation of Modeling Errors Due to Unknown Domain Boundary in Diffuse Optical Tomography
,”
J. Opt. Soc. Am. A
,
31
(
8
), pp.
1847
1855
.
19.
Tarvainen
,
T.
,
Kolehmainen
,
V.
,
Pulkkinen
,
A.
,
Vauhkonen
,
M.
,
Schweiger
,
M.
,
Arridge
,
S. R.
, and
Kaipio
,
J. P.
,
2010
, “
An Approximation Error Approach for Compensating for Modelling Errors Between the Radiative Transfer Equation and the Diffusion Approximation in Diffuse Optical Tomography
,”
Inverse Probl.
,
26
(
1
), p.
015005
.
20.
Kolehmainen
,
V.
,
Tarvainen
,
T.
,
Arridge
,
S. R.
, and
Kaipio
,
J. P.
,
2011
, “
Marginalization of Uninteresting Distributed Parameters in Inverse Problems—Application to Diffuse Optical Tomography
,”
Int. J. Uncertainty Quantif.
,
1
(
1
), pp.
1
17
.
21.
Huttunen
,
J. M. J.
, and
Kaipio
,
J. P.
,
2007
, “
Approximation Error Analysis in Nonlinear State Estimation With an Application to State-Space Identification
,”
Inverse Probl.
,
23
(
5
), pp.
2141
2157
.
22.
Huttunen
,
J. M. J.
,
Lehikoinen
,
A.
,
Hämäläinen
,
J.
, and
Kaipio
,
J. P.
,
2010
, “
Importance Sampling Approach for the Nonstationary Approximation Error Method
,”
Inverse Probl.
,
26
(
12
), p.
125003
.
23.
Huttunen
,
J. M. J.
, and
Pikkarainen
,
H. K.
,
2007
, “
Discretization Error in Dynamical Inverse Problems: One-Dimensional Model Case
,”
J. Inverse Ill-Posed Probl.
,
15
(
4
), pp.
365
386
24.
Huttunen
,
J.
, and
Kaipio
,
J. P.
,
2007
, “
Approximation Errors in Nonstationary Inverse Problems
,”
Inverse Probl. Imaging
,
1
(
1
), pp.
77
93
.
25.
Huttunen
,
J. M. J.
, and
Kaipio
,
J. P.
,
2009
, “
Model Reduction in State Identification Problems With an Application to Determination of Thermal Parameters
,”
Appl. Numer. Math.
,
59
(
5
), pp.
877
890
.
26.
Lamien
,
B.
,
Orlande
,
H. R. B.
, and
Eliçabe
,
G. E.
,
2015
, “
Comparison of Particle Filter Algorithms Applied to the Temperature Filed Estimation in Hyperthermia Phantoms
,”
1st Thermal and Fluid Engineering Summer Conference
, ASTFE, New York, Paper No. TFESC–13764.
27.
Lamien
,
B.
,
Orlande
,
H. R. B.
, and
Eliçabe
,
G. E.
,
2015
, “
Inverse Problem in the Hyperthermia Therapy of Cancer With Laser Heating and Plasmonic Nanoparticles
,”
Inverse Probl. Sci. Eng.
(in press).
28.
Varon
,
L. A. B.
,
Orlande
,
H. R. B.
, and
Elicabe
,
G.
,
2016
, “
Combined Parameter and State in the Radiofrequency Hyperthermia Treatment of Cancer
,”
Numer. Heat Transfer, Part A
(in press).
29.
Lamien
,
B.
,
Varon
,
L. A. B.
,
Orlande
,
H. R. B.
, and
Eliçabe
,
G. E.
,
2016
, “
State Estimation in Bioheat Transfer: A Comparison of Particle Filter Algorithms
,”
Int. J. Numer. Methods Heat Fluid Flow
(in press).
30.
Varon
,
L. A. B.
,
Orlande
,
H. R. B.
, and
Elicabe
,
G.
,
2015
, “
Estimation of State Variables in the Hyperthermia Therapy of Cancer With Heating Imposed by Radiofrequency Electromagnetic Waves
,”
Int. J. Therm. Sci.
,
98
, pp.
228
236
.
31.
dos Santos
,
I.
,
Haemmerich
,
D.
,
Schutt
,
D.
,
da Rocha
,
A. F.
, and
Menezes
,
L. R.
,
2009
, “
Probabilistic Finite Element Analysis of Radiofrequency Liver Ablation Using the Unscented Transform
,”
Phys. Med. Biol.
,
54
(
3
), pp.
627
640
.
32.
de Greef
,
M.
,
Kok
,
H. P.
,
Correia
,
D.
,
Borsboom
,
P. P.
,
Bel
,
A.
, and
Crezee
,
J.
,
2011
, “
Uncertainty in Hyperthermia Treatment Planning: The Need for Robust System Design
,”
Phys. Med. Biol.
,
56
(
11
), pp.
3233
3250
.
33.
Liu
,
J.
,
2001
, “
Uncertainty Analysis for Temperature Prediction of Biological Bodies Subject to Randomly Spatial Heating
,”
J. Biomech.
,
34
(
12
), pp.
1637
1642
.
34.
Liu
,
J.
,
2014
, “
Ways Toward Targeted Freezing or Heating Ablation of Malignant Tumor: Precisely Managing the Heat
,”
15th International Heat Transfer Conference
, IHTC-15, Kyoto, Japan.
35.
Xu
,
X.
,
Meade
,
A.
, and
Bayazitoglu
,
Y.
,
2011
, “
Numerical Investigation of Nanoparticle-Assisted Laser-Induced Interstitial Thermotherapy Toward Tumor and Cancer Treatments
,”
Lasers Med. Sci.
,
26
(
2
), pp.
213
222
.
36.
Tjahjono
,
I. K.
, and
Bayazitoglu
,
Y.
,
2008
, “
Near-Infrared Light Heating of a Slab by Embedded Nanoparticles
,”
Int. J. Heat Mass Transfer
,
51
(7–8), pp.
1505
1515
.
37.
Vera
,
J.
, and
Bayazitoglu
,
Y.
,
2009
, “
A Note on Laser Penetration in Nanoshell Deposited Tissue
,”
Int. J. Heat Mass Transfer
,
52
(13–14), pp.
3402
3406
.
38.
Vera
,
J.
, and
Bayazitoglu
,
Y.
,
2009
, “
Gold Nanoshell Density Variation With Laser Power for Induced Hyperthermia
,”
Int. J. Heat Mass Transfer
,
52
(3–4), pp.
564
573
.
39.
Bayazitoglu
,
Y.
,
Kheradmand
,
S.
, and
Tullius
,
T. K.
,
2013
, “
An Overview of Nanoparticle Assisted Laser Therapy
,”
Int. J. Heat Mass Transfer
,
67
, pp.
469
486
.
40.
Dombrovsky
,
L. A.
,
Timchenko
,
V.
, and
Jackson
,
M.
,
2012
, “
Indirect Heating Strategy for Laser Induced Hyperthermia: An Advanced Thermal Model
,”
Int. J. Heat Mass Transfer
,
55
(17–18), pp.
4688
4700
.
41.
Dombrovsky
,
L. A.
,
Timchenko
,
V.
,
Jackson
,
M.
, and
Yeoh
,
G. H.
,
2011
, “
A Combined Transient Thermal Model for Laser Hyperthermia of Tumors With Embedded Gold Nanoshells
,”
Int. J. Heat Mass Transfer
,
54
(25–26), pp.
5459
5469
.
42.
Chatterjee
,
D.
, and
Krishnan
,
S.
,
2013
, “
Gold Nanoparticle—Mediated Hyperthermia in Cancer Therapy
,”
Cancer Nanotechnology: Principles and Applications in Radiation Oncology
,
S.
Cho
, and
S.
Krishnan
, eds.,
CRC Press
,
Boca Raton, FL
.
43.
van der Zee
,
J.
,
2002
, “
Heating the Patient: A Promising Approach?
,”
Ann. Oncol.
,
13
(
8
), pp.
1173
1184
.
44.
Tamarov
,
K. P.
,
Osminkina
,
L. A.
,
Zinovyev
,
S. V.
,
Maximova
,
K. A.
,
Kargina
,
J. V.
,
Gongalsky
,
M. B.
,
Ryabchikov
,
Y.
,
Al-Kattan
,
A.
,
Sviridov
,
A. P.
,
Sentis
,
M.
,
Ivanov
,
A. V.
,
Nikiforov
,
V. N.
,
Kabashin
,
A. V.
, and
Timoshenko
,
V. Y.
,
2014
, “
Radio Frequency Radiation-Induced Hyperthermia Using Si Nanoparticle-Based Sensitizers for Mild Cancer Therapy
,”
Sci. Rep.
,
4
, p.
7034
.
45.
Wang
,
Q.
,
Xie
,
L.
,
He
,
Z.
,
Di
,
D.
, and
Liu
,
J.
,
2012
, “
Biodegradable Magnesium Nanoparticle-Enhanced Laser Hyperthermia Therapy
,”
Int. J. Nanomed.
,
7
, pp.
4715
4725
.
46.
Rengan
,
A. K.
,
Bukhari
,
A. B.
,
Pradhan
,
A.
,
Malhotra
,
R.
,
Banerjee
,
R.
,
Srivastava
,
R.
, and
De
,
A.
,
2015
, “
In Vivo Analysis of Biodegradable Liposome Gold Nanoparticles as Efficient Agents for Photothermal Therapy of Cancer
,”
Nano Lett.
,
15
(
2
), pp.
842
848
.
47.
Pearce
,
J. A.
,
2013
, “
Comparative Analysis of Mathematical Models of Cell Death and Thermal Damage Processes
,”
Int. J. Hyperthermia
,
29
(
4
), pp.
262
280
.
48.
van Rhoon
,
G. C.
,
2016
, “
Is CEM43 Still a Relevant Thermal Dose Parameter for Hyperthermia Treatment Monitoring?
,”
Int. J. Hyperthermia
,
32
(
1
), pp.
50
62
.
49.
Clinicaltrials
,
2010
, “
Pilot Study of AuroLase™ Therapy in Refractory and/or Recurrent Tumors of the Head and Neck
,” National Institutes of Health, Bethesda, MD.
50.
Çetingül
,
M. P.
, and
Herman
,
C.
,
2010
, “
A Heat Transfer Model of Skin Tissue for the Detection of Lesions: Sensitivity Analysis
,”
Phys. Med. Biol.
,
55
(
19
), pp.
5933
5951
.
51.
Çetingül
,
M. P.
, and
Herman
,
C.
,
2011
, “
Quantification of the Thermal Signature of a Melanoma Lesion
,”
Int. J. Therm. Sci.
,
50
(
4
), pp.
421
431
.
52.
Star
,
W. M.
,
2011
, “
Diffusion Theory of Light Transport
,”
Optical-Thermal Response of Laser-Irradiated Tissue
,
A. J.
Welch
, and
M. J. C.
van Gemert
, eds.,
Springer
,
New York
.
53.
Carp
,
S. A.
,
Prahl
,
S. A.
, and
Venugopalan
,
V.
,
2004
, “
Radiative Transport in the Delta-P1 Approximation: Accuracy of Fluence Rate and Optical Penetration Depth Predictions in Turbid Semi-Infinite Media
,”
J. Biomed. Opt.
,
9
(
3
), pp.
632
647
.
54.
Elliott
,
A. M.
,
Stafford
,
R. J.
,
Schwartz
,
J.
,
Wang
,
J.
,
Shetty
,
A. M.
,
Bourgoyne
,
C.
,
O'Neal
,
P.
, and
Hazle
,
J. D.
,
2007
, “
Laser-Induced Thermal Response and Characterization of Nanoparticles for Cancer Treatment Using Magnetic Thermal Imaging
,”
Med. Phys. J.
,
34
(
7
), pp.
3102
3108
.
55.
Dombrovsky
,
L. A.
,
Randrianalisoa
,
J. H.
,
Lipinski
,
W.
, and
Timchenko
,
V.
,
2013
, “
Simplified Approaches to Radiative Transfer Simulations in Laser-Induced Hyperthermia of Superficial Tumors
,”
Comput. Therm. Sci.
,
5
(
6
), pp.
521
530
.
56.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.http://jap.physiology.org/content/jap/1/2/93.full.pdf
57.
Singh
,
R.
,
Das
,
K.
,
Okajima
,
J.
,
Maruyama
,
S.
, and
Mishra
,
S. C.
,
2015
, “
Modeling Skin Cooling Using Optical Windows and Cryogens During Laser Induced Hyperthermia in a Multilayer Vascularized Tissue
,”
Appl. Therm. Eng.
,
89
, pp.
28
35
.
58.
Andrieu
,
C.
,
Doucet
,
A.
,
Singh
,
S. S.
, and
Tadic
,
V. B.
,
2004
, “
Particle Methods for Change Detection, System Identification, and Control
,”
Proc. IEEE
,
92
(
3
), pp.
423
438
.
59.
Carpenter
,
J.
,
Clifford
,
P.
, and
Fearnhead
,
P.
,
1999
, “
An Improved Particle Filter for Non-Linear Problems
,”
IEEE Proc. Radar Sonar Navig.
,
146
(
1
), pp.
2
7
.
60.
Del Moral
,
P.
, and
Jasra
,
A.
,
2007
, “
Sequential Monte Carlo for Bayesian Computation
,”
Bayesian Statistics
, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds., Oxford University Press, Oxford, UK, pp. 1–34.
61.
Candy
,
J. V.
,
2008
,
Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods
,
Wiley
,
Hoboken, NJ
.
62.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.
63.
West
,
M.
,
1993
, “
Approximating Posterior Distributions by Mixture
,”
J. R. Stat. Soc.: Ser. B
,
55
(
2
), pp.
409
422
.http://www.jstor.org/stable/2346202
64.
Lehikoinen
,
A.
,
Finsterle
,
S.
,
Voutilainen
,
A.
,
Kowalsky
,
M. B.
, and
Kaipio
,
J. P.
,
2009
, “
Dynamical Inversion of Geophysical ERT Data: State Estimation in the Vadose Zone
,”
Inverse Probl. Sci. Eng.
,
17
(
6
), pp.
715
736
.
65.
Lipponen
,
A.
,
Seppänen
,
A.
, and
Kaipio
,
J. P.
,
2011
, “
Nonstationary Approximation Error Approach to Imaging of Three-Dimensional Pipe Flow: Experimental Evaluation
,”
Meas. Sci. Technol.
,
22
(
10
), p.
104013
.
66.
Pacheco
,
C. C.
,
Orlande
,
H. R. B.
,
Colaço
,
M. J.
, and
Dulikravich
,
G. S.
,
2015
, “
Estimation of a Location-and-Time Dependent High Magnitude Heat Flux in a Heat Conduction Problem Using the Kalman Filter and the Approximation Error Model
,”
Numer. Heat Transfer, Part A
,
68
(
11
), pp.
1198
1219
.
67.
Hasgall
,
P. A.
,
Di Gennaro
,
F.
,
Baumgarther
,
C.
,
Neufeld
,
E.
,
Gosselin
,
M. C.
,
Payne
,
D.
,
Klingenbock
,
A.
, and
Kuster
,
N.
, “
IT'IS Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 3.0
,” IT'IS Foundation, Zurich.
68.
Bashkatov
,
A. N.
,
Genina
,
E. A.
, and
Tuchin
,
V. V.
,
2011
, “
Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review
,”
J. Innovative Opt. Health Sci.
,
4
(
1
), pp.
9
38
.
69.
Jain
,
P. K.
,
Lee
,
K. S.
,
El-Sayed
,
I. H.
, and
El-Sayed
,
M. A.
,
2006
, “
Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine
,”
J. Phys. Chem. B
,
110
(
14
), pp.
7238
7248
.
70.
Prahl
,
S. A.
,
1988
, “
Light Transport in Tissue
,”
Ph.D. thesis
, University of Texas at Austin, Austin, TX.http://elibrary.ru/item.asp?id=5928423
You do not currently have access to this content.