This paper investigates natural convection heat transfer of generalized Oldroyd-B fluid in a porous medium with modified fractional Darcy's law. Nonlinear coupled boundary layer governing equations are formulated with time–space fractional derivatives in the momentum equation. Numerical solutions are obtained by the newly developed finite difference method combined with L1-algorithm. The effects of involved parameters on velocity and temperature fields are presented graphically and analyzed in detail. Results indicate that, different from the classical result that Prandtl number only affects the heat transfer, it has remarkable influence on both the velocity and temperature boundary layers, the average Nusselt number rises dramatically in low Prandtl number, but increases slowly with the augment of Prandtl number. The maximum value of velocity profile and the thickness of momentum boundary layer increases with the augment of porosity and Darcy number. Moreover, the relaxation fractional derivative parameter accelerates the convection flow and weakens the elastic effect significantly, while the retardation fractional derivative parameter slows down the motion and strengthens the elastic effect.

References

1.
Khuzhayorov
,
B.
,
Auriault
,
J. L.
, and
Royer
,
P.
,
2000
, “
Derivation of Macroscopic Filtration Law for Transient Linear Viscoelastic Fluid Flow in Porous Media
,”
Int. J. Eng. Sci.
,
38
(
5
), pp.
487
504
.
2.
Ehlers
,
W.
, and
Markert
,
B.
,
2001
, “
A Linear Viscoelastic Biphasic Model for Soft Tissues Based on the Theory of Porous Media
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
418
424
.
3.
Tan
,
W. C.
, and
Masuoka
,
T.
,
2005
, “
Stokes' First Problem for an Oldroyd-B Fluid in a Porous Half Space
,”
Phys. Fluids
,
17
(
2
), p.
023101
.
4.
Bég
,
O. A.
,
Takhar
,
H. S.
,
Bhargava
,
R.
,
Rawat
,
S.
, and
Prasad
,
V. R.
,
2008
, “
Numerical Study of Heat Transfer of a Third Grade Viscoelastic Fluid in Non-Darcy Porous Media With Thermophysical Effects
,”
Phys. Scr.
,
77
(
6
), p.
065402
.
5.
Khani
,
F.
,
Farmany
,
A.
,
Raji
,
M. A.
,
Aziz
,
A.
, and
Samadi
,
F.
,
2009
, “
Analytic Solution for Heat Transfer of a Third Grade Viscoelastic Fluid in Non-Darcy Porous Media With Thermophysical Effects
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
11
), pp.
3867
3878
.
6.
Zueco
,
J.
,
Bég
,
O. A.
, and
Ghosh
,
S. K.
,
2011
, “
Unsteady Hydromagnetic Natural Convection of a Short-Memory Viscoelastic Fluid in a Non-Darcian Regime: Network Simulation
,”
Chem. Eng. Commun.
,
198
(
2
), pp.
172
190
.
7.
Hayat
,
T.
,
Mustafa
,
M.
, and
Pop
,
I.
,
2010
, “
Heat and Mass Transfer for Soret and Dufour's Effect on Mixed Convection Boundary Layer Flow Over a Stretching Vertical Surface in a Porous Medium Filled With a Viscoelastic Fluid
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
5
), pp.
1183
1196
.
8.
Yadav
,
D.
,
Bhargava
,
R.
,
Agrawal
,
G. S.
,
Yadav
,
N.
,
Lee
,
J.
, and
Kim
,
M. C.
,
2014
, “
Thermal Instability in a Rotating Porous Layer Saturated by a Non-Newtonian Nanofluid With Thermal Conductivity and Viscosity Variation
,”
Microfluid. Nanofluid.
,
16
(
1–2
), pp.
425
440
.
9.
Shivakumara
,
I. S.
,
Dhananjaya
,
M.
, and
Ng
,
C. O.
,
2015
, “
Thermal Convective Instability in an Oldroyd-B Nanofluid Saturated Porous Layer
,”
Int. J. Heat Mass Transfer
,
84
, pp.
167
177
.
10.
Agarwal
,
S.
, and
Rana
,
P.
,
2015
, “
Thermal Stability Analysis of Rotating Porous Layer With Thermal Non-Equilibrium Approach Utilizing Al2O3–EG Oldroyd-B Nanofluid
,”
Microfluid. Nanofluid.
,
19
(
1
), pp.
117
131
.
11.
Khan
,
S. U.
,
Ali
,
N.
, and
Abbas
,
Z.
,
2015
, “
Hydromagnetic Flow and Heat Transfer Over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid With Porous Medium
,”
PLoS One
,
10
(
12
), p.
e0144299
.
12.
Howe
,
A. M.
,
Clarke
,
A.
, and
Giernalczyk
,
D.
,
2015
, “
Flow of Concentrated Viscoelastic Polymer Solutions in Porous Media: Effect of MW and Concentration on Elastic Turbulence Onset in Various Geometries
,”
Soft Matter
,
11
(
32
), pp.
6419
6431
.
13.
Ali
,
N.
,
Khan
,
S. U.
,
Abbas
,
Z.
, and
Sajid
,
M.
,
2016
, “
Soret and Dufour Effects on Hydromagnetic Flow of Viscoelastic Fluid Over Porous Oscillatory Stretching Sheet With Thermal Radiation
,”
J. Braz. Soc. Mech. Sci. Eng.
(in press).
14.
Glöckle
,
W. G.
, and
Nonnenmacher
,
T. F.
,
1994
, “
Fractional Relaxation and the Time-Temperature Superposition Principle
,”
Rheol. Acta
,
33
(
4
), pp.
337
343
.
15.
Heymans
,
N.
,
1996
, “
Hierarchical Models for Viscoelasticity: Dynamic Behavior in the Linear Range
,”
Rheol. Acta
,
35
(
5
), pp.
508
519
.
16.
Hayat
,
T.
,
Khan
,
M.
, and
Asghar
,
S.
,
2007
, “
On the MHD Flow of Fractional Generalized Burgers' Fluid With Modified Darcy's Law
,”
Acta Mech. Sin.
,
23
(
3
), pp.
257
261
.
17.
Khan
,
M.
, and
Hayat
,
T.
,
2008
, “
Some Exact Solutions for Fractional Generalized Burgers' Fluid in a Porous Space
,”
Nonlinear Anal.: Real World Appl.
,
9
(
5
), pp.
1952
1965
.
18.
Xue
,
C. F.
,
Nie
,
J. X.
, and
Tan
,
W. C.
,
2008
, “
An Exact Solution of Start-Up Flow for the Fractional Generalized Burgers' Fluid in a Porous Half-Space
,”
Nonlinear Anal.: Theory Methods Appl.
,
69
(
7
), pp.
2086
2094
.
19.
Khan
,
M.
,
Hayat
,
T.
, and
Asghar
,
S.
,
2006
, “
Exact Solution for MHD Flow of a Generalized Oldroyd-B Fluid With Modified Darcy's Law
,”
Int. J. Eng. Sci.
,
44
(
5
), pp.
333
339
.
20.
Guo
,
X. Y.
,
2014
, “
Decay of Potential Vortex and Diffusion of Temperature in a Generalized Oldroyd-B Fluid Through a Porous Medium
,”
Math. Probl. Eng.
,
2014
, p.
719464
.
21.
Guo
,
X. Y.
, and
Fu
,
Z. W.
,
2015
, “
An Initial and Boundary Value Problem of Fractional Jeffreys' Fluid in a Porous Half Space
,”
Comput. Math. Appl.
(in press).
22.
Tripathi
,
D.
,
Bég
,
O. A.
,
Gupta
,
P. K.
,
Radhakrishnamacharya
,
G.
, and
Mazumdar
,
J.
,
2015
, “
DTM Simulation of Peristaltic Viscoelastic Biofluid Flow in Asymmetric Porous Media: A Digestive Transport Model
,”
J. Bionic Eng.
,
12
(
4
), pp.
643
655
.
23.
Tripathi
,
D.
, and
Bég
,
O. A.
,
2015
, “
Mathematica Numerical Simulation of Peristaltic Biophysical Transport of a Fractional Viscoelastic Fluid Through an Inclined Cylindrical Tube
,”
Comput. Methods Biomech. Biomed.
,
18
(
15
), pp.
1648
1657
.
24.
Tripathi
,
D.
, and
Bég
,
O. A.
,
2015
, “
Peristaltic Transport of Maxwell Viscoelastic Fluids With a Slip Condition: Homotopy Analysis of Gastric Transport
,”
J. Mech. Med. Biol.
,
15
(
3
), p.
1550021
.
25.
Li
,
C. R.
,
Zheng
,
L. C.
,
Zhang
,
X. X.
, and
Chen
,
G.
,
2016
, “
Flow and Heat Transfer of a Generalized Maxwell Fluid With Modified Fractional Fourier's Law and Darcy's Law
,”
Comput. Fluids
,
125
, pp.
25
38
.
26.
Maqbool
,
K.
,
Bég
,
O. A.
,
Sohail
,
A.
, and
Idreesa
,
A.
,
2016
, “
Analytical Solutions for Wall Slip Effects on Magnetohydrodynamic Oscillatory Rotating Plate and Channel Flows in Porous Media Using a Fractional Burgers Viscoelastic Model
,”
Eur. Phys. J. Plus
,
131
(
5
), pp.
1
17
.
27.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
28.
Nield
,
D. A.
, and
Bejan
,
A.
,
2013
,
Convection in Porous Media
, 4th ed.,
Springer
,
New York
.
29.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
30.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol.
,
30
(
1
), pp.
133
155
.
31.
Nithiarasu
,
P.
,
Seetharamu
,
K. N.
, and
Sundararajan
,
T.
,
1997
, “
Natural Convective Heat Transfer in a Fluid Saturated Variable Porosity Medium
,”
Int. J. Heat Mass Transfer
,
40
(
16
), pp.
3955
3967
.
32.
Liu
,
F.
,
Zhuang
,
P.
,
Anh
,
V.
,
Turner
,
I.
, and
Burrage
,
K.
,
2007
, “
Stability and Convergence of the Difference Methods for the Space–Time Fractional Advection–Diffusion Equation
,”
Appl. Math. Comput.
,
191
(
1
), pp.
12
20
.
33.
Zhao
,
J. H.
,
Zheng
,
L. C.
,
Zhang
,
X. X.
, and
Liu
,
F. W.
,
2016
, “
Unsteady Natural Convection Boundary Layer Heat Transfer of Fractional Maxwell Viscoelastic Fluid Over a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
97
, pp.
760
766
.
34.
Ganesan
,
P.
, and
Palani
,
G.
,
2004
, “
Finite Difference Analysis of Unsteady Natural Convection MHD Flow Past an Inclined Plate With Variable Surface Heat and Mass Flux
,”
Int. J. Heat Mass Transfer
,
47
(
19
), pp.
4449
4457
.
35.
Lynch
,
V. E.
,
Carreras
,
B. A.
,
del-Castillo-Negrete
,
D.
,
Ferreira-Mejias
,
K. M.
, and
Hicks
,
H. R.
,
2003
, “
Numerical Methods for the Solution of Partial Differential Equations of Fractional Order
,”
J. Comput. Phys.
,
192
(
2
), pp.
406
421
.
36.
Carnahan
,
B.
,
Luther
,
H. A.
, and
Wilkes
,
J. O.
,
1969
,
Applied Numerical Methods
,
Wiley
,
New York
.
37.
Crepeau
,
J. C.
, and
Clarksean
,
R.
,
1997
, “
Similarity Solutions of Natural Convection With Internal Heat Generation
,”
ASME J. Heat Transfer
,
119
(
1
), pp.
183
185
.
38.
Chamkha
,
A. J.
, and
Khaled
,
A. R. A.
,
2001
, “
Similarity Solutions for Hydromagnetic Simultaneous Heat and Mass Transfer by Natural Convection From an Inclined Plate With Internal Heat Generation or Absorption
,”
Heat Mass Transfer
,
37
(
2
), pp.
117
123
.
39.
Chen
,
C. H.
,
2004
, “
Combined Heat and Mass Transfer in MHD Free Convection From a Vertical Surface With Ohmic Heating and Viscous Dissipation
,”
Int. J. Eng. Sci.
,
42
(
7
), pp.
699
713
.
40.
Muthukumaraswamy
,
R.
, and
Ganesan
,
P.
,
1998
, “
Unsteady Flow Past an Impulsively Started Vertical Plate With Heat and Mass Transfer
,”
Heat Mass Transfer
,
34
(
2–3
), pp.
187
193
.
You do not currently have access to this content.