This paper quantifies the pool boiling performance of R134a, R1234yf, R513A, and R450A on a flattened, horizontal reentrant cavity surface. The study showed that the boiling performance of R134a on the Turbo-ESP exceeded that of the replacement refrigerants for heat fluxes greater than 20 kW m−2. On average, the heat flux for R1234yf and R513A was 16% and 19% less than that for R134a, respectively, for R134a heat fluxes between 20 kW m−2 and 110 kW m−2. The heat flux for R450A was on average 57% less than that of R134a for heat fluxes between 30 kW m−2 and 110 kW m−2. A model was developed to predict both single-component and multicomponent pool boiling of the test refrigerants on the Turbo-ESP surface. The model accounts for viscosity effects on bubble population and uses the Fritz equation to account for increased vapor production with increasing superheat. Both loss of available superheat and mass transfer resistance effects were modeled for the refrigerant mixtures. For most heat fluxes, the model predicted the measured superheat to within ±0.31 K.

References

1.
Maybach
,
W.
,
1902
, “
Cooling and Condensing Apparatus
,” U.S. Patent No. 709416 A.
2.
Bergles
,
A. E.
,
1988
, “
Enhancement of Convective Heat Transfer Newton's Legacy Pursued
,”
History of Heat Transfer
,
American Society of Mechanical Engineers
,
New York
, pp.
53
64
.
3.
Donaldson
,
B.
,
Nagengast
,
B.
, and
Meckler
,
G.
,
1995
,
Heat and Cold: Mastering the Great Indoors: A Selective History
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
New York
, p.
261
.
4.
Aerofin
,
2017
, “History,”Aerofin, Lynchburg, VA, accessed July 20, 2018, http://www.aerofin.com/about/history
5.
Rogers
,
J. S.
,
1961
,
Study of Low-Fin Tube 1929–1960
,
Wolverine Tube, Inc.
,
Decatur, AL
, Internal Report No. Neshan-1.
6.
Locke
,
A. A.
,
1930
, “
Integral Finned Tubing and Method of Manufacturing the Same
,” Lynchburg, VA, U.S. Patent No.
1,761,733
.https://patents.google.com/patent/US1761733
7.
Kedzierski
,
M. A.
,
1999
, “
Ralph L. Webb: A Pioneering Proselytizer for Enhanced Heat Transfer
,”
J. Enhanced Heat Transfer
,
6
(
2–4
), pp.
71
78
.
8.
Webb
,
R. L.
,
1972
, “
Heat Transfer Surface Having a High Boiling Heat Transfer Coefficient
,” Trane US Inc., U.S. Patent No.
3,696,861
.https://patents.google.com/patent/US3696861A/en
9.
Montreal
,
P.
,
1987
,
Montreal Protocol on Substances That Deplete the Ozone Layer
,
United Nations, New York
(1987 with subsequent amendments).
10.
EU
,
2014
, “
Regulation (Eu) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006
,”
Official Journal of the European Union
, p. L 150/195.https://www.eea.europa.eu/policy-documents/regulation-eu-no-517-2014
11.
UNEP
,
2016
, “
Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer
,” United Nations Environment Programme, Kigali, Rwanda, accessed July 25, 2017, https://treaties.un.org/doc/Publication/CN/2016/CN.872.2016-Eng.pdf
12.
Myhre
,
G.
,
Shindell
,
D.
,
Bréon
,
F.-M.
,
Collins
,
W.
,
Fuglestvedt
,
J.
,
Huang
,
J.
,
Koch
,
D.
,
Lamarque
,
J.-F.
,
Lee
,
D.
,
Mendoza
,
B.
,
Nakajima
,
T.
,
Robock
,
A.
,
Stephens
,
G.
,
Takemura
,
T.
, and
Zhang
,
H.
,
2013
, “
Anthropogenic and Natural Radiative Forcing Supplementary Material
,”
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,
T. F.
Stocker
,
D.
Qin
,
G.-K.
Plattner
,
M.
Tignor
,
S. K.
Allen
,
J.
Boschung
,
A.
Nauels
,
Y.
Xia
,
V.
Bex
and
P. M.
Midgley
, eds., Cambridge University Press, Cambridge, UK.https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/supplementary/WG1AR5_Ch08SM_FINAL.pdf
13.
ASHRAE
,
2016
, “
Designation and Safety Classification of Refrigerants
,” American Society of Heating, Refrigerating and Air-Conditioning Engineers, New York, ANSI/ASHRAE Standard No.
34-2016
.https://www.ashrae.org/File%20Library/Technical%20Resources/Standards%20and%20Guidelines/Standards%20Addenda/34_2016_l_20180126.pdf
14.
Park
,
K. J.
, and
Jung
,
D.
,
2010
, “
Nucleate Boiling Heat Transfer Coefficients of R1234yf on Plain and Low Fin Surfaces
,”
Int. J. Refrig.
,
33
(
3
), pp.
553
557
.
15.
Moreno
,
G.
,
Narumanchi
,
S.
, and
King
,
C.
,
2013
, “
Pool Boiling Heat Transfer Characteristics of HFO-1234yf on Plain and Microporous-Enhanced Surfaces
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111014
.
16.
Lee
,
Y.
,
Kang
,
D. G.
,
Kim
,
J. H.
, and
Jung
,
D.
,
2014
, “
Nucleate Boiling Heat Transfer Coefficients of HFO1234yf on Various Enhanced Surfaces
,”
Int. J. Refrig.
,
38
, pp.
198
205
.
17.
Gorgy
,
E.
, and
Eckels
,
S.
,
2010
, “
Average Heat Transfer Coefficient for Pool Boiling of R-134a and R-123 on Smooth and Enhanced Tubes (RP-1316)
,”
HVACR Res.
,
16
(
5
), pp.
657
676
.
18.
Gorgy
,
E.
, and
Eckels
,
S.
,
2012
, “
Local Heat Transfer Coefficient for Pool Boiling of R-134a and R-123 on Smooth and Enhanced Tubes
,”
Int. J. Heat Mass Transfer
,
55
, pp.
3021
3028
.
19.
Gorgy
,
E.
,
2016
, “
Nucleate Boiling of Low-GWP Refrigerants on Highly Enhanced Tube Surface
,”
Int. J. Heat Mass Transfer
,
96
, pp.
660
666
.
20.
Kedzierski
,
M. A.
,
2002
, “
Use of Fluorescence to Measure the Lubricant Excess Surface Density During Pool Boiling
,”
Int. J. Refrig.
,
25
(
8
), pp.
1110
1122
.
21.
Kedzierski
,
M. A.
,
2000
, “
Enhancement of R123 Pool Boiling by the Addition of Hydrocarbons
,”
Int. J. Refrig.
,
23
(
2
), pp.
89
100
.
22.
Kedzierski
,
M. A.
,
Lin
,
L.
, and., and
Kang
,
D. Y.
,
2017
, “
Pool Boiling of Low GWP Replacements for R134a on a Reentrant Cavity Surface; Extensive Measurement and Analysis
,” National Institute of Standards and Technology, Gaithersburg, MD, Technical Note No.
1968
.https://www.nist.gov/publications/pool-boiling-low-gwp-replacements-r134a-reentrant-cavity-surface-extensive-measurement
23.
Kedzierski
,
M. A.
,
1995
, “
Calorimetric and Visual Measurements of R123 Pool Boiling on Four Enhanced Surfaces
,” U.S. Department of Commerce, Washington, DC, Standard No.
NISTIR 5732
.https://www.nist.gov/publications/calorimetric-and-visual-measurements-r123-pool-boiling-four-enhanced-surfaces
24.
Belsley
,
D. A.
,
Kuh
,
E.
, and
Welsch
,
R. E.
,
1980
,
Regression Diagnostics: Identifying Influential Data and Sources of Collinearity
,
Wiley
,
New York
.
25.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “
NIST Standard Reference Database 23 (REFPROP), Version 9.1
,” National Institute of Standards and Technology, Boulder, CO.
26.
Wilson
,
E. E.
,
1915
, “
A Basis for Rational Design of Heat Transfer Apparatus
,”
Trans. ASME
,
37
, pp.
47
70
.
27.
Webb
,
R. L.
, and
Kim
,
N.-H.
,
2005
,
Principles of Enhanced Heat Transfer
, 2nd ed.,
Taylor & Francis
,
New York
.
28.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1969
, “
A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics
,”
ASME J. Heat Transfer
,
91
(
2
), pp.
245
250
.
29.
Kedzierski
,
M. A.
,
2007
, “
Effect of Refrigerant Oil Additive on R134a and R123 Boiling Heat Transfer Performance
,”
Int. J. Refrig.
,
30
(
1
), pp.
144
154
.
30.
Fritz
,
W.
,
1935
, “
Berechnung Des Maximalvolume Von Dampfblasen
,”
Physikalische Z.
,
36
, pp.
379
388
.
31.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
216
.
32.
Shock
,
R. A. W.
,
1982
, “
Boiling in Multicomponent Fluids
,”
Multiphase Science and Technology
, Vol.
1
,
Hemisphere Publishing Corp
.,
New York
, pp.
281
386
.
33.
Schluender
,
E. U.
,
1983
, “
Heat Transfer in Nucleate Boiling of Mixtures
,”
Int. Chem. Eng.
,
23
(
4
), pp.
589
599
.
You do not currently have access to this content.