Unicellular Rayleigh–Bénard convection of water–copper nanoliquid confined in a high-porosity enclosure is studied analytically. The modified-Buongiorno–Brinkman two-phase model is used for nanoliquid description to include the effects of Brownian motion, thermophoresis, porous medium friction, and thermophysical properties. Free–free and rigid–rigid boundaries are considered for investigation of onset of convection and heat transport. Boundary effects on onset of convection are shown to be classical in nature. Stability boundaries in the R1*–R2 plane are drawn to specify the regions in which various instabilities appear. Specifically, subcritical instabilities' region of appearance is highlighted. Square, shallow, and tall porous enclosures are considered for study, and it is found that the maximum heat transport occurs in the case of a tall enclosure and minimum in the case of a shallow enclosure. The analysis also reveals that the addition of a dilute concentration of nanoparticles in a liquid-saturated porous enclosure advances onset and thereby enhances the heat transport irrespective of the type of boundaries. The presence of porous medium serves the purpose of heat storage in the system because of its low thermal conductivity.

References

1.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.
2.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
3.
Siddheshwar
,
P. G.
, and
Meenakshi
,
N.
,
2015
, “
Amplitude Equation and Heat Transport for Rayleigh–Bénard Convection in Newtonian Liquids With Nanoparticles
,”
Int. J. Appl. Comp. Math.
3
(1), pp. 271–292.
4.
Abu-Nada
,
E.
,
2011
, “
Rayleigh–Bénard Convection in Nanofluids: Effect of Temperature Dependent Properties
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1720
1730
.
5.
Alloui
,
Z.
,
Vasseur
,
P.
, and
Reggio
,
M.
,
2011
, “
Natural Convection of Nanofluids in a Shallow Cavity Heated From Below
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
385
393
.
6.
Alsabery
,
A. I.
,
Saleh
,
H.
,
Hashim
,
I.
, and
Siddheshwar
,
P. G.
,
2016
, “
Transient Natural Convection Heat Transfer in Nanoliquid-Saturated Porous Oblique Cavity Using Thermal Non-Equilibrium Model
,”
Int. J. Mech. Sci.
,
114
, pp.
233
245
.
7.
Tzou
,
D. Y.
,
2008
, “
Instability of Nanofluids in Natural Convection
,”
ASME J. Heat Transfer
,
130
(
7
), p.
072401
.
8.
Tzou
,
D. Y.
,
2008
, “
Thermal Instability of Nanofluids in Natural Convection
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
2967
2979
.
9.
Yang
,
C.
,
Li
,
W.
,
Sano
,
Y.
,
Mochizuki
,
M.
, and
Nakayama
,
A.
,
2013
, “
On the Anomalous Convective Heat Transfer Enhancement in Nanofluids: A Theoretical Answer to the Nanofluids Controversy
,”
ASME J. Heat Transfer
,
135
(
5
), p.
054504
.
10.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
,
Ganji
,
D. D.
, and
Soleimani
,
S.
,
2014
, “
Thermal Management for Free Convection of Nanofluid Using Two Phase Model
,”
J. Mol. Liq.
,
194
, pp.
179
187
.
11.
Bhadauria
,
B. S.
, and
Agarwal
,
S.
,
2011
, “
Convective Transport in a Nanofluid Saturated Porous Layer With Thermal Non Equilibrium Model
,”
Transp. Porous Media
,
88
(
1
), pp.
107
131
.
12.
Agarwal
,
S.
,
Rana
,
P.
, and
Bhadauria
,
B. S.
,
2014
, “
Rayleigh–Bénard Convection in a Nanofluid Layer Using a Thermal Nonequilibrium Model
,”
ASME J. Heat Transfer
,
136
(
12
), p.
122501
.
13.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2009
, “
Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5796
5801
.
14.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Effect of Local Thermal Non-Equilibrium on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid
,”
Transp. Porous Media
,
83
(
2
), pp.
425
436
.
15.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2011
, “
The Effect of Local Thermal Non-Equilibrium on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid: Brinkman Model
,”
J. Porous Media
,
14
(
4
), pp.
285
293
.
16.
Khalili
,
E.
,
Saboonchi
,
A.
, and
Saghafian
,
M.
,
2017
, “
Experimental Study of Nanoparticles Distribution in Natural Convection of Al2O3–Water Nanofluid in a Square Cavity
,”
Int. J. Therm. Sci.
,
112
, pp.
82
91
.
17.
Yadav
,
D.
,
Bhargava
,
R.
, and
Agrawal
,
G. S.
,
2012
, “
Boundary and Internal Heat Source Effects on the Onset of Darcy–Brinkman Convection in a Porous Layer Saturated by Nanofluid
,”
Int. J. Therm. Sci.
,
60
, pp.
244
254
.
18.
Agarwal
,
S.
, and
Rana
,
P.
,
2016
, “
Convective Heat Transport by Longitudinal Rolls in Dilute Nanoliquid Layer of Finite Depth
,”
Int. J. Therm. Sci.
,
108
, pp.
235
243
.
19.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2011
, “
The Onset of Double-Diffusive Convection in a Nanofluid Layer
,”
Int. J. Heat Fluid Flow
,
32
(
4
), pp.
771
776
.
20.
di Schio
,
E. R.
,
Celli
,
M.
, and
Barletta
,
A.
,
2014
, “
Effects of Brownian Diffusion and Thermophoresis on the Laminar Forced Convection of a Nanofluid in a Channel
,”
ASME J. Heat Transfer
,
136
(2), p.
022401
.
21.
Barletta
,
A.
,
Rossi di Schio
,
E.
, and
Celli
,
M.
,
2015
, “
Convection and Instability Phenomena in Nano-Fluid-Saturated Porous Media
,”
Heat Transfer Enhancement With Nanofluids
,
CRC Press
,
Boca Raton, FL
, pp.
341
364
.
22.
Siddheshwar
,
P. G.
,
Kanchana
,
C.
,
Kakimoto
,
Y.
, and
Nakayama
,
A.
,
2016
, “
Steady Finite-Amplitude Rayleigh–Bénard Convection in Nanoliquids Using a Two-Phase Model-Theoretical Answer to the Phenomenon of Enhanced Heat Transfer
,”
ASME J. Heat Transfer
,
139
(
1
), p.
012402
.
23.
Vanaki
,
S. M.
,
Ganesan
,
P.
, and
Mohammed
,
H. A.
,
2016
, “
Numerical Study of Convective Heat Transfer of Nanofluids: A Review
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
1212
1239
.
24.
Garoosi
,
F.
,
Bagheri
,
G.
, and
Rashidi
,
M. M.
,
2015
, “
Two Phase Simulation of Natural Convection and Mixed Convection of the Nanofluid in a Square Cavity
,”
Powder Technol.
,
275
, pp.
239
256
.
25.
Haddad
,
Z.
,
Abu-Nada
,
E.
,
Oztop
,
H. F.
, and
Mataoui
,
A.
,
2012
, “
Natural Convection in Nanofluids: Are the Thermophoresis and Brownian Motion Effects Significant in Nanofluid Heat Transfer Enhancement?
,”
Int. J. Therm. Sci.
,
57
, pp.
152
162
.
26.
Dastmalchi
,
M.
,
Sheikhzadeh
,
G. A.
, and
Arani
,
A. A. A.
,
2015
, “
Double-Diffusive Natural Convective in a Porous Square Enclosure Filled With Nanofluid
,”
Int. J. Therm. Sci.
,
95
, pp.
88
98
.
27.
Siddheshwar
,
P. G.
, and
Kanchana
,
C.
,
2017
, “
Unicellular Unsteady Rayleigh–Bénard Convection in Newtonian Liquids and Newtonian Nanoliquids Occupying Enclosures: New Findings
,”
Int. J. Mech. Sci.
,
131
, pp.
1061
1072
.
28.
Siddheshwar
,
P. G.
, and
Kanchana
,
C.
,
2018
, “
A Study of Unsteady, Unicellular Rayleigh–Bénard Convection of Nanoliquids in Enclosures Using Additional Modes
,”
J. Nanofluids
,
7
(
4
), pp.
791
800
.
29.
Kanchana
,
C.
, and
Zhao
,
Y.
,
2018
, “
Effect of Internal Heat Generation/Absorption on Rayleigh–Bénard Convection in Water Well-Dispersed With Nanoparticles on Carbon Nanotubes
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1031
1047
.
30.
Kanchana
,
C.
,
Zhao
,
Y.
, and
Siddheshwar
,
P. G.
,
2018
, “
A Comparative Study of Individual Influences of Suspended Multiwalled Carbon Nanotubes and Alumina Nanoparticles on Rayleigh–Bénard Convection in Water
,”
Phys. Fluids
,
30
, p.
084101
.
31.
Park
,
H. M.
,
2015
, “
Rayleigh–Bénard Convection of Nanofluids Based on the Pseudo-Single-Phase Continuum Model
,”
Int. J. Therm. Sci.
,
90
, pp.
267
278
.
32.
Corcione
,
M.
,
2011
, “
Rayleigh–Bénard Convection Heat Transfer in Nanoparticle Suspensions
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
65
77
.
33.
D'Orazio
,
M. C.
,
Cianfrini
,
C.
, and
Corcione
,
M.
,
2004
, “
Rayleigh–Bénard Convection in Tall Rectangular Enclosures
,”
Int. J. Therm. Sci.
,
43
, pp.
135
144
.
34.
Abu-Nada
,
E.
, and
Chamkha
,
A. J.
,
2010
, “
Effect of Nanofluid Variable Properties on Natural Convection in Enclosures Filled With a Cuo–EG–Water Nanofluid
,”
Int. J. Therm. Sci.
,
49
(
12
), pp.
2339
2352
.
35.
Jou
,
R.-Y.
, and
Tzeng
,
S.-C.
,
2006
, “
Numerical Research of Nature Convective Heat Transfer Enhancement Filled With Nanofluids in Rectangular Enclosures
,”
Int. Commun. Heat Mass Transfer
,
33
(
6
), pp.
727
736
.
36.
Elhajjar
,
B.
,
Bachir
,
G.
,
Mojtabi
,
A.
,
Fakih
,
C.
, and
Charrier-Mojtabi
,
M. C.
,
2010
, “
Modeling of Rayleigh–Bénard Natural Convection Heat Transfer in Nanofluids
,”
C. R. Méc.
,
338
(
6
), pp.
350
354
.
37.
Abu-Nada
,
E.
,
Masoud
,
Z.
,
Oztop
,
H. F.
, and
Campo
,
A.
,
2010
, “
Effect of Nanofluid Variable Properties on Natural Convection in Enclosures
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
479
491
.
38.
Groşan
,
T.
,
Revnic
,
C.
,
Pop
,
I.
, and
Ingham
,
D. B.
,
2015
, “
Free Convection Heat Transfer in a Square Cavity Filled With a Porous Medium Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
87
, pp.
36
41
.
39.
Sheremet
,
M. A.
,
Pop
,
I.
, and
Nazar
,
R.
,
2015
, “
Natural Convection in a Square Cavity Filled With a Porous Medium Saturated With a Nanofluid Using the Thermal Nonequilibrium Model With a Tiwari and Das Nanofluid Model
,”
Int. J. Mech. Sci.
,
100
, pp.
312
321
.
40.
Sheremet
,
M. A.
,
Pop
,
I.
, and
Rahman
,
M. M.
,
2015
, “
Three-Dimensional Natural Convection in a Porous Enclosure Filled With a Nanofluid Using Buongiorno's Mathematical Model
,”
Int. J. Heat Mass Transfer
,
82
, pp.
396
405
.
41.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), p.
571
.
42.
Bianco
,
V.
,
Manca
,
O.
,
Nardini
,
S.
, and
Vafai
,
K.
,
2015
,
Heat Transfer Enhancement With Nanofluids
,
CRC Press
,
New York
.
43.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.
44.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
(
6
), pp.
577
588
.
45.
Chandrasekhar
,
S.
,
1961
,
Hydrodynamic and Hydromagnetic Stability
,
Clarendon Press
,
London
.
46.
Chandrasekhar
,
S.
, and
Reid
,
W. H.
,
1957
, “
On the Expansion of Functions Which Satisfy Four Boundary Conditions
,”
Proc. Natl. Acad. Sci. U. S.A.
,
43
(
6
), pp.
521
527
.
47.
Nagata
,
M.
,
1995
, “
Bifurcations at the Eckhaus Points in Two-Dimensional Rayleigh–Bénard Convection
,”
Phys. Rev. E
,
52
(
6
), pp.
6141
6145
.
48.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.
49.
Baines
,
P. G.
, and
Gill
,
A. E.
,
1969
, “
On Thermohaline Convection With Linear Gradients
,”
J. Fluid Mech.
,
37
(
2
), pp.
289
306
.
You do not currently have access to this content.