Abstract

Accurate knowledge of the heat flux characteristics provided by optical heat sources of long heating time nondestructive infrared thermography techniques is essential to determine the adequate application of such techniques; however, detailed characterizations are scarce. Therefore, a thermal and statistical characterization of a halogen lamp was developed. A highly repeatable experimental procedure was used to characterize the heat flux generated at an ideal inspection sample top surface. The characteristics studied were: lamp distance, bulb color, lamp orientation, heat quality, and heating time. The heat flux was determined by using the readings of temperature and heat flux from the sample back, and a finite differences lumped capacitance thermal model. Detailed studies using three sensors determined that the heat flux was nonuniform (13% maximum variation). Therefore, a full quantitative characterization of the lamp was developed by using the average of such sensor readings, determining that: this halogen lamp can provide consistent top heat fluxes (although not uniformly distributed) adequate for nondestructive testing infrared thermography, the lamp distance and bulb color affected the amount of heat provided as well as the heat flux uniformity, and lamp orientation did not affect the mean top heat fluxes. This research approach can be used to determine an approximation of the lamp time-averaged heat fluxes for any material with similar top surface optical characteristics. Moreover, the technical data provided are useful to determine the adequacy of heating time, lamp distance, lamp orientation, and bulb color for long heating time nondestructive testing infrared thermography.

References

1.
Herraiz
,
Á. H.
,
Marugán
,
A. P.
, and
Márquez
,
F. P. G.
,
2020
, “
A Review on Condition Monitoring System for Solar Plants Based on Thermography
,”
Non-Destructive Testing and Condition Monitoring Techniques for Renewable Energy Industrial Assets
,
M.
Papaelias
, eds.,
Butterworth-Heinemann
,
Boston, MA
, pp.
103
118
.
2.
Liu
,
X.
,
Chang
,
J.
,
Chen
,
W. L.
,
Fan
,
K. Y.
,
Zhong
,
Y.
,
Zhang
,
B.
, and
Gong
,
X. Z.
,
2020
, “
A Dynamic Foveated Infrared Imager for Surveillance
,”
Opt. Lasers Eng.
,
124
, p.
105825
.10.1016/j.optlaseng.2019.105825
3.
Benavent Casanova
,
O.
,
Benavente Gómez
,
N.
,
Priego Quesada
,
J. I.
,
Galindo Gonzalez
,
C. M.
,
Cibrián Ortiz De Anda
,
R. M.
,
Salvador Palmero
,
R.
, and
Núñez Gómez
,
F.
,
2019
, “
Application of Infrared Thermography in Diagnosing Peripherally Inserted Central Venous Catheter Infections in Children With Cancer
,”
Physiol. Meas.
,
40
(
4
), p.
044002
.10.1088/1361-6579/ab031a
4.
Xia
,
Y.
,
Xu
,
Y.
,
Li
,
J.
,
Zhang
,
C.
, and
Fan
,
S.
,
2019
, “
Recent Advances in Emerging Techniques for Non-Destructive Detection of Seed Viability: A Review
,”
Artif. Intell. Agric.
,
1
, pp.
35
47
.10.1016/j.aiia.2019.05.001
5.
Viegas
,
F.
,
Mello
,
M. T. D.
,
Rodrigues
,
S. A.
,
Costa
,
C. M. A.
,
Freitas
,
L. D. S. N.
,
Rodrigues
,
E. L.
, and
Silva
,
A.
,
2020
, “
The Use of Thermography and Its Control Variables: A Systematic Review
,”
Rev. Brasil. Med. Esporte
,
26
(
1
), pp.
82
86
.10.1590/1517-869220202601217833
6.
Wheeler
,
A. S.
,
2018
, “
Nondestructive Evaluation of Concrete Bridge Columns Rehabilitiated With Fiber Reinforced Polymers Using Digital Tap Hammer and Infrared Thermography
,”
Ph.D. dissertation
,
West Virginia University
,
Morgantown, WV
.https://researchrepository.wvu.edu/etd/3979/
7.
Garrido
,
I.
,
Lagüela
,
S.
,
Otero
,
R.
, and
Arias
,
P.
,
2020
, “
Thermographic Methodologies Used in Infrastructure Inspection: A Review—Post-Processing Procedures
,”
Appl. Energy
,
266
, p.
114857
.10.1016/j.apenergy.2020.114857
8.
Ciampa
,
F.
,
Mahmoodi
,
P.
,
Pinto
,
F.
, and
Meo
,
M.
,
2018
, “
Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components
,”
Sensors
,
18
(
2
), p.
609
.10.3390/s18020609
9.
Ruwandi Fernando
,
W. D.
,
Tantrigoda
,
D. A.
,
Rosa
,
S. R. D.
, and
Jayasundara
,
D. R.
,
2019
, “
Infrared Thermography as a Non-Destructive Testing Method for Adhesively Bonded Textile Structures
,”
Infrared Phys. Technol.
,
98
, pp.
89
93
.10.1016/j.infrared.2019.03.001
10.
Dizeu
,
F. B. D.
,
Laurendeau
,
D.
, and
Bendada
,
A.
,
2016
, “
Non-Destructive Testing of Objects of Complex Shape Using Infrared Thermography: Rear Surface Reconstruction by Temporal Tracking of the Thermal Front
,”
Inverse Probl.
,
32
(
12
), p.
125007
.10.1088/0266-5611/32/12/125007
11.
Doshvarpassand
,
S.
,
Wu
,
C.
, and
Wang
,
X.
,
2019
, “
An Overview of Corrosion Defect Characterization Using Active Infrared Thermography
,”
Infrared Phys. Technol.
,
96
, pp.
366
389
.10.1016/j.infrared.2018.12.006
12.
Senthilkumar
,
M.
,
Sreekanth
,
T. G.
, and
Manikanta Reddy
,
S.
,
2020
, “
Nondestructive Health Monitoring Techniques for Composite Materials: A Review
,”
Polym. Polym. Compos.
, epub.10.1177/0967391120921701
13.
Hung
,
Y. Y.
,
Chen
,
Y. S.
,
Ng
,
S. P.
,
Liu
,
L.
,
Huang
,
Y. H.
,
Luk
,
B. L.
,
Ip
,
R. W. L.
,
Wu
,
C. M. L.
, and
Chung
,
P. S.
,
2009
, “
Review and Comparison of Shearography and Active Thermography for Nondestructive Evaluation
,”
Mater. Sci. Eng. R
,
64
(
5–6
), pp.
73
112
.10.1016/j.mser.2008.11.001
14.
Yang
,
R.
,
He
,
Y.
, and
Zhang
,
H.
,
2016
, “
Progress and Trends in Nondestructive Testing and Evaluation for Wind Turbine Composite Blade
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
1225
1250
.10.1016/j.rser.2016.02.026
15.
Mouhoubi
,
K.
,
Detalle
,
V.
,
Vallet
,
J.-M.
, and
Bodnar
,
J.-L.
,
2019
, “
Improvement of the Non-Destructive Testing of Heritage Mural Paintings Using Stimulated Infrared Thermography and Frequency Image Processing
,”
J. Imag.
,
5
(
9
), p.
72
.10.3390/jimaging5090072
16.
Giron-Palomares
,
B.
,
Fu
,
X.
,
Hernandez-Guerrero
,
A.
, and
Ramos-Alvarado
,
B.
,
2014
, “
Evaluation of Nonintrusive Active Infrared Thermography Technique to Detect Hidden Solder Ball Defects on Plastic Ball Grid Array Components
,”
ASME J. Electron. Packag.
,
136
, p.
031008
.10.1115/1.4027378
17.
Ibarra-Castanedo
,
C.
,
Piau
,
J.-M.
,
Guilbert
,
S.
,
Avdelidis
,
N. P.
,
Genest
,
M.
,
Bendada
,
A.
, and
Maldague
,
X. P. V.
,
2009
, “
Comparative Study of Active Thermography Techniques for the Nondestructive Evaluation of Honeycomb Structures
,”
Res. Nondestruct. Eval.
,
20
(
1
), pp.
1
31
.10.1080/09349840802366617
19.
Cabrera
,
H.
,
Akbar
,
J.
,
Korte
,
D.
,
Ramírez-Miquet
,
E. E.
,
Marín
,
E.
,
Niemela
,
J.
,
Ebrahimpour
,
Z.
,
Mannatunga
,
K.
, and
Franko
,
M.
,
2018
, “
Trace Detection and Photothermal Spectral Characterization by a Tuneable Thermal Lens Spectrometer With White-Light Excitation
,”
Talanta
,
183
, pp.
158
163
.10.1016/j.talanta.2018.02.073
20.
Rezky
,
A.
,
Devara
,
K.
,
Wardana
,
N. S.
,
Ramadhanty
,
S.
, and
Abuzairi
,
T.
,
2018
, “
Simple Method for I-V Characterization Curve for Low Power Solar Cell Using Arduino Nano
,”
E3S Web Conference
,
67
, p.
01020
.10.1051/e3sconf/20186701020
21.
Oveisi
,
M.
,
Mahmoodi
,
N. M.
, and
Asli
,
M. A.
,
2019
, “
Halogen Lamp Activated Nanocomposites as Nanoporous Photocatalysts: Synthesis, Characterization, and Pollutant Degradation Mechanism
,”
J. Mol. Liq.
,
281
, pp.
389
400
.10.1016/j.molliq.2019.02.069
22.
Ali
,
A.
,
Topalli
,
K.
,
Ramzan
,
M.
,
Khan
,
T. M.
,
Altintas
,
A.
, and
Colantonio
,
P.
,
2019
, “
Optical Characterization of High and Low Resistive Silicon Samples Suitable for Reconfigurable Antenna Design
,”
Microwave Opt. Technol. Lett.
,
61
(
1
), pp.
107
110
.10.1002/mop.31506
23.
Jiménez-Miramontes
,
J. A.
,
Domínguez-Arvizu
,
J. L.
,
Salinas-Gutiérrez
,
J. M.
,
Meléndez-Zaragoza
,
M. J.
,
López-Ortiz
,
A.
, and
Collins-Martínez
,
V.
,
2017
, “
Synthesis, Characterization and Photocatalytic Evaluation of Strontium Ferrites Towards H2 Production by Water Splitting Under Visible Light Irradiation
,”
Int. J. Hydrogen Energy
,
42
(
51
), pp.
30257
30266
.10.1016/j.ijhydene.2017.09.162
24.
Djupkep Dizeu
,
F. B.
,
Bendada
,
A.
, and
Laurendeau
,
D.
,
2017
, “
Nondestructive Testing of Objects of Complex Shape Using Infrared Thermography: Determination of the Spatiotemporal Distribution of the Irradiation Heat Flux
,”
Infrared Phys. Technol.
,
83
, pp.
164
176
.10.1016/j.infrared.2017.04.024
25.
Zalameda
,
J. N.
, and
Winfree
,
W. P.
,
2000
, “
Quartz Lamp Characterization for Quantitative Thermal Nondestructive Evaluation
,”
AIP Conf. Proc.
,
509
(
1
), pp.
1889
1896
.10.1063/1.1291302
26.
Neter
,
J.
,
Kutner
,
M. H.
,
Nachtsheim
,
C. J.
, and
Li
,
W.
,
2005
,
Applied Linear Statistical Models
,
McGraw-Hill/Irwin
,
New York
.
27.
Giron-Palomares
,
B.
,
Hernandez-Guerrero
,
A.
,
Romero-Mendez
,
R.
, and
Yang
,
H. J.
,
2020
, “
Lamp Characterization Dataset
”.
28.
Giron-Palomares
,
B.
,
Hernandez-Guerrero
,
A.
,
Romero-Mendez
,
R.
, and
Yang
,
H. J.
,
2020
, “
Rawdata-Time Increment Independence Study.Xlsx
” .
29.
Giron-Palomares
,
B.
,
Hernandez-Guerrero
,
A.
,
Romero-Mendez
,
R.
, and
Yang
,
H. J.
,
2020
, “
Repeatability Study on the Uniformity Data.Xlsx
”.
30.
Giron-Palomares
,
B.
,
Hernandez-Guerrero
,
A.
,
Romero-Mendez
,
R.
, and
Yang
,
H. J.
,
2020
, “
Repeatability-Study-on-the-Characterization-Data.Xlsx
”.
31.
Giron-Palomares
,
B.
,
Hernandez-Guerrero
,
A.
,
Romero-Mendez
,
R.
, and
Yang
,
H. J.
,
2020
, “
Repeatability Study on the Top Heat Flux.Xlsx
”.
32.
Giron-Palomares
,
B.
,
Hernandez-Guerrero
,
A.
,
Romero-Mendez
,
R.
, and
Yang
,
H. J.
,
2020
, “
Rawdata-Inspection Sample Effect Study.Xlsx
”.
You do not currently have access to this content.