Abstract

Coiled finned-tube heat exchangers, also called Collins type heat exchangers, are frequently used in small- to medium-scale cryogenic systems to improve design packaging (compactness) while maintaining high thermal effectiveness. A typical heat exchanger assembly of this kind consists of an inner cylindrical shell, called the mandrel, with helical finned-tube coils wrapped around it, and then enclosed by an outer shell. One flow path is through the helically wrapped tube, and the other flow path through annular flow region of the tubes. These are also known as tube and shell streams, respectively. An accurate description of the shell-side thermal-hydraulic flow characteristics is a necessary part of the heat exchanger design. In this paper, these characteristics for cryogenic gaseous nitrogen, between 300 and 100 K, are numerically investigated. A computational fluid dynamics model of the shell-side geometry is developed and validated. Simulations are carried out for a wide range of flow conditions. Data obtained from the numerical simulations are used to form correlations between the shell-side Reynolds number (Re), Fanning friction factor (f), and Chilton-Colburn factor (j). In addition, the effect of geometrical variance on the correlation was investigated. The results from this study show reasonable agreement with experimental data.

References

1.
Hubbell
,
R. H.
, and
Toscano
,
W. M.
,
1980
, “
Thermodynamic Optimization of Helium Liquefaction Cycles
,”
Advances in Cryogenic Engineering 35A
,
K. D.
Timmerhaus
and
H. A.
Snyder
eds.,
Springer
,
Boston, MA
, pp.
551
562
.
2.
Geist
,
J. M.
, and
Lashmet
,
P. K.
,
1960
, “
Miniature Joule-Thomson Refrigeration Systems
,”
Advances in Cryogenic Engineering 25
,
K. D.
Timmerhaus
and
H. A.
Snyder
eds.,
Springer
,
Boston, MA
, pp.
324
331
.
3.
Popov
,
D.
,
Fikiin
,
K.
,
Stankov
,
B.
,
Alvarez
,
G.
,
Youbi-Idrissi
,
M.
,
Damas
,
A.
,
Evans
,
J.
, and
Brown
,
T.
,
2019
, “
Cryogenic Heat Exchangers for Process Cooling and Renewable Energy Storage: A Review
,”
Appl. Therm. Eng.
,
153
(
5
), pp.
275
290
.10.1016/j.applthermaleng.2019.02.106
4.
Knudsen
,
P. N.
,
2016
, “
Testing and Analysis of an Exergetically Efficient 4 K to 2 K Helium Heat Exchanger
,”
Ph.D. dissertation
,
Old Dominion University
,
Norfolk, VA
.
5.
Scott
,
R. B.
,
1959
,
Cryogenic Engineering
,
D.
Van Nostrand
,
Princeton
,
NJ
.
6.
Fleming
,
R. B.
,
1967
, “
The Effect of Flow Distribution in Parallel Channels of Counterflow Heat Exchangers
,”
Advances in Cryogenic Engineering 12
,
K. D.
Timmerhaus
eds.,
Springer
,
Boston, MA
, pp.
352
362
.
7.
Hesselgreaves
,
J. E.
,
Law
,
R.
, and
Reay
,
D. A.
,
2017
,
Compact Heat Exchangers: Selection, Design and Operation
,
Elsevier
,
Oxford, UK
.
8.
Berger
,
S. A.
,
Talbot
,
L.
, and
Yao
,
L. S.
,
1983
, “
Flow in Curved Pipes
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
461
512
.10.1146/annurev.fl.15.010183.002333
9.
Jayakumar
,
J. S.
,
Mahajani
,
S. M.
,
Mandal
,
J. C.
,
Iyer
,
K. N.
, and
Vijayan
,
P. K.
,
2010
, “
CFD Analysis of Single-Phase Flows Inside Helically Coiled Tubes
,”
Comput. Chem. Eng.
,
34
(
4
), pp.
430
446
.10.1016/j.compchemeng.2009.11.008
10.
Collins
,
S. C.
,
1947
, “
A Helium Cryostat
,”
Rev. Sci. Instrum.
,
18
(
3
), pp.
157
167
.10.1063/1.1740913
11.
Kays
,
W. M.
, and
London
,
A. L.
,
1964
,
Compact Heat Exchangers
, 2nd ed.,
McGraw-Hill Book Co
,
New York
.
12.
Croft
,
A. J.
, and
Tebby
,
P. B.
,
1970
, “
The Design of Finned-Tube Cryogenic Heat Exchangers
,”
Cryogenics
,
10
(
3
), pp.
236
238
.10.1016/0011-2275(70)90108-6
13.
Gupta
,
P. K.
,
Kush
,
P. K.
, and
Tiwari
,
A.
,
2010
, “
Experimental Studies on Pressure Drop Characteristics of Cryogenic Cross-Counter Flow Coiled Finned Tube Heat Exchangers
,”
Cryogenics
,
50
(
4
), pp.
257
265
.10.1016/j.cryogenics.2010.01.012
14.
Gupta
,
P. K.
,
Kush
,
P. K.
, and
Tiwari
,
A.
,
2007
, “
Design and Optimization of Coil Finned-Tube Heat Exchangers for Cryogenic Applications
,”
Cryogenics
,
47
(
5–6
), pp.
322
332
.10.1016/j.cryogenics.2007.03.010
15.
Gupta
,
P. K.
,
Kush
,
P. K.
, and
Tiwari
,
A.
,
2009
, “
Experimental Research on Heat Transfer Coefficients for Cryogenic Cross-Counter-Flow Coiled Finned-Tube Heat Exchangers
,”
Int. J. Refrig.
,
32
(
5
), pp.
960
972
.10.1016/j.ijrefrig.2008.10.015
16.
Alimoradi
,
A.
, and
Veysi
,
F.
,
2016
, “
Prediction of Heat Transfer Coefficients of Shell and Coiled Tube Heat Exchangers Using Numerical Method and Experimental Validation
,”
Int. J. Therm. Sci.
,
107
, pp.
196
208
.10.1016/j.ijthermalsci.2016.04.010
17.
Sepehr
,
M.
,
Hashemi
,
S. S.
,
Rahjoo
,
M.
,
Farhangmehr
,
V.
, and
Alimoradi
,
A.
,
2018
, “
Prediction of Heat Transfer, Pressure Drop and Entropy Generation in Shell and Helically Coiled Finned Tube Heat Exchangers
,”
Chem. Eng. Res. Des.
,
134
, pp.
277
291
.10.1016/j.cherd.2018.04.010
18.
Genić
,
S. B.
,
Jaćimović
,
B. M.
,
Jarić
,
M. S.
,
Budimir
,
N. J.
, and
Dobrnjac
,
M. M.
,
2012
, “
Research on the Shell-Side Thermal Performances of Heat Exchangers With Helical Tube Coils
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4295
4300
.10.1016/j.ijheatmasstransfer.2012.03.074
19.
Zhou
,
Y.
,
Yu
,
J.
, and
Chen
,
X.
,
2012
, “
Thermodynamic Optimization Analysis of a Tube-in-Tube Helically Coiled Heat Exchanger for Joule–Thomson Refrigerators
,”
Int. J. Therm. Sci.
,
58
, pp.
151
156
.10.1016/j.ijthermalsci.2012.02.028
20.
Jian
,
G.
,
Wang
,
S.
,
Sun
,
L.
,
Wen
,
J.
, and
Tu
,
J.
,
2020
, “
Experimental Study of the Effects of Key Geometry Parameters on Shell-Side Vapor Condensation of Spiral-Wound Heat Exchangers
,”
Appl. Therm. Eng.
,
166
, p.
114731
.10.1016/j.applthermaleng.2019.114731
21.
Hasan
,
N.
, and
Knudsen
,
P.
,
2016
, “
Shell-Side Pressure Drop Measurement in a Collins Type 4.5 K - 2 K Heat Exchanger
,” Thomas Jefferson National Accelerator Facility, Newport News, VA, Report No. JLAB-TN-16-036.
22.
Currie
,
I. G.
,
2013
,
Fundamental Mechanics of Fluids
,
Taylor & Francis
,
Boca Raton, FL
.
23.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.10.1021/i160057a011
24.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
Mclinden
,
M. O.
,
2013
, NIST Standard Reference Database 23 (REFPROP), National Institute of Standards and Technology (NIST), Ver. 9.1, Boulder, CO. Report No. NIST-SRDS-23.
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
26.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “
Turbulence Modeling Validation, Testing, and Development
,” NASA, Moffet Field, CA, Report No. NASA-TM-110446.
27.
Kline
,
S. J.
, and
Mcclintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
28.
Kim
,
N. H.
,
Yun
,
J. H.
, and
Webb
,
R. L.
,
1997
, “
Heat Transfer and Friction Correlations for Wavy Plate Fin-and-Tube Heat Exchangers
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
560
567
.10.1115/1.2824141
You do not currently have access to this content.