Abstract

Matrix cooling has opened new possibilities for enhancing the convective heat transfer coefficients without compromising upon the structural rigidity and the life of the gas turbine blade at elevated temperatures. However, the dense structure of the matrix significantly increases the flow resistance and imposes the limitation to its usage. Recently, a matrix with a gap on the sidewalls called open matrix has been proposed by few researchers to reduce the associated pressure penalties. This detailed experimental investigation aims to study the open matrix channel flow and presents the effects of varying sidewall gaps on heat transfer characteristics and friction factor in the open matrixes having rib angle 45 deg for three different subchannel aspect ratios 1.2, 0.8, and 0.4. Liquid crystal thermography has been utilized to discern the detailed heat transfer characteristics. The results have been evaluated in terms of augmentation Nusselt number, friction factor ratio, and overall thermal performance factor over the Reynolds numbers 5800–14,000. The closed matrixes provided the highest augmentation in Nusselt number, and the gaps on the sidewall have shown an overall reduction in augmentation Nusselt number in most cases. However, the suitable sidewall gaps show the effective reduction in pressure penalties for the smaller subchannel aspect ratios. The highest augmentation Nusselt number among the open matrixes has been found as 3.83 with a reduced friction factor ratio for the matrix with a 4-mm gap in subchannel aspect ratio = 0.8 (i.e., 4 subchannels) at Re = 8100.

References

1.
Hwang
,
J. J.
, and
Liou
,
T. M.
,
1997
, “
Heat Transfer Augmentation in a Rectangular Channel With Slit Rib-Turbulators on Two Opposite Walls
,”
ASME J. Turbomach.
,
119
(
3
), pp.
617
623
.10.1115/1.2841167
2.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1997
, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2525
2537
.10.1016/S0017-9310(96)00318-3
3.
Ligrani
,
P. M.
,
Mahmood
,
G. I.
,
Harrison
,
J. L.
,
Clayton
,
C. M.
, and
Nelson
,
D. L.
,
2001
, “
Flow Structure and Local Nusselt Number Variations in a Channel With Dimples and Protrusions on Opposite Walls
,”
Int. J. Heat Mass Transfer
,
44
(
23
), pp.
4413
4425
.10.1016/S0017-9310(01)00101-6
4.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
700
706
.10.1115/1.3245188
5.
Promvonge
,
P.
,
Chompookham
,
T.
,
Kwankaomeng
,
S.
, and
Thianpong
,
C.
,
2010
, “
Enhanced Heat Transfer in a Triangular Ribbed Channel With Longitudinal Vortex Generators
,”
Energy Convers. Manage.
,
51
(
6
), pp.
1242
1249
.10.1016/j.enconman.2009.12.035
6.
Ali
,
M. S.
,
Tariq
,
A.
, and
Gandhi
,
B. K.
,
2016
, “
Role of Chamfering Angles and Flow Through Slit on Heat Transfer Augmentation Behind a Surface-Mounted Rib
,”
ASME J. Heat Transfer
,
138
(
11
), p.
111901
.10.1115/1.4033747
7.
Tariq
,
A.
,
Sharma
,
N.
, and
Mishra
,
M.
,
2018
, “
Aerothermal Characteristics of Solid and Slitted Pentagonal Rib Turbulators
,”
ASME J. Heat Transfer
,
140
(
6
), p.
061901
.10.1115/1.4039398
8.
Sharma
,
N.
,
Tariq
,
A.
, and
Mishra
,
M.
,
2018
, “
Detailed Heat Transfer and Fluid Flow Investigation in a Rectangular Duct With Truncated Prismatic Ribs
,”
Exp. Therm. Fluid Sci.
,
96
, pp.
383
396
.10.1016/j.expthermflusci.2018.03.029
9.
Sharma
,
N.
,
Tariq
,
A.
, and
Mishra
,
M.
,
2019
, “
Experimental Investigation of Heat Transfer Enhancement in Rectangular Duct With Pentagonal Ribs
,”
Heat Transfer Eng.
,
40
(
1–2
), pp.
147
165
.10.1080/01457632.2017.1421135
10.
Goreloff
,
V.
,
Goychengerg
,
M.
, and
Malkoff
,
V.
,
1990
, “
The Investigation of Heat Transfer in Cooled Blades of Gas Turbines
,”
AIAA
Paper No. AIAA-90-2144.10.2514/6.AIAA-90-2144
11.
Gillespie
,
D. R. H.
, and
Ireland
,
P. T.
,
2000
, “
Detailed Flow and Heat Transfer Coefficient Measurement in a Model of an Internal Cooling Geometry Employing Orthogonal Intersecting Channels
,”
ASME
Paper No. 2000-GT-653.10.1115/2000-GT-653
12.
Bunker
,
R. S.
,
2004
, “
Lattice Work (Vortex) Cooling Effectiveness Part 1: Stationary Channel Experiments
,”
ASME
Paper No. GT2004-54157.10.1115/GT2004-54157
13.
Saha
,
K.
,
Guo
,
S.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2008
, “
Heat Transfer and Pressure Measurements in a Lattice-Cooled Trailing Edge of a Turbine Airfoil
,”
ASME
Paper No. GT2008-51324.10.1115/GT2008-51324
14.
Saha
,
K.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2008
, “
Heat Transfer and Pressure Drop in a Converging Lattice Structure for Airfoil Trailing Edge Cooling
,”
ASME
Paper No. IMECE2008-68152.10.1115/IMECE2008-68152
15.
Acharya
,
S.
,
Zhou
,
F.
,
Lagrone
,
J.
,
Mahmood
,
G.
, and
Bunker
,
R. S.
,
2005
, “
Latticework (Vortex) Cooling Effectiveness Part 2: Rotating Channel Experiments
,”
ASME J. Turbomach.
,
127
(
3
), pp.
471
478
.10.1115/1.1860381
16.
Oh
,
I. T.
,
Kyung
,
M. K.
,
Dong
,
H. L.
,
Jun
,
S. P.
, and
Hyung
,
H. C.
,
2012
, “
Local Heat and Mass Transfer and Friction Loss Measurement in a Rotating Matrix Cooling Channel
,”
ASME J. Heat Tranfer
,
134
(
1
), p.
011901
.10.1115/1.4004853
17.
Rao
,
Y.
, and
Zang
,
S.
,
2014
, “
Flow and Heat Transfer Characteristics in Latticework Cooling Channels With Dimple Vortex Generators
,”
ASME J. Turbomach.
,
136
(
2
), p.
021017
.10.1115/1.4025197
18.
Reddy
,
S. R.
,
Siddappa
,
P. G.
,
Kesavan
,
V.
, and
Kumar
,
S. K.
,
2014
, “
Computational Study of Flow and Heat Transfer in Matrix Cooling Channels
,”
ASME
Paper No. GT2014-8252.10.1115/GT2014-8252
19.
Caracasci
,
C.
,
Facchini
,
B.
,
Pievaroli
,
M.
,
Tarchi
,
L.
,
Ceccherini
,
A.
, and
Innocenti
,
L.
,
2014
, “
Heat Transfer and Pressure Loss Measurements of Matrix Cooling Geometries for Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
136
(
2
), p.
121005
.10.1115/1.4028237
20.
Bu
,
S.
,
Yang
,
Z.
,
Zhang
,
W.
,
Huannan
,
L.
, and
Haiou
,
S.
,
2016
, “
Research on the Thermal Performance of Matrix Cooling Channel With Response Surface Methodology
,”
Appl. Therm. Eng.
,
109
, pp.
75
86
.10.1016/j.applthermaleng.2016.08.005
21.
Choi
,
S. M.
,
Bang
,
M.
,
Kim
,
S. Y.
,
Lee
,
H.
,
Joo
,
W. G.
, and
Cho
,
H. H.
,
2017
, “
Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel
,”
World Acad. Sci., Eng. Technol., Int. J. Mech. Mechatronics Eng.
,
11
(
12
), pp.
1906
1910
.10.5281/zenodo.1314877
22.
Prajapati
,
A. N.
, and
Tariq
,
A.
,
2019
, “
A Comparative Study of Heat Transfer Characteristics and Pressure Drop in Matrix Structures
,”
ASME
Paper No. GTINDIA2019-2550.10.1115/GTINDIA2019-2550
23.
Prajapati
,
A. N.
, and
Tariq
,
A.
,
2019
, “
Detailed Heat Transfer Characteristics of Matrix Cooling Channels With Rib Angle 35 deg Using Liquid Crystal Thermography
,”
ASME
Paper No. GTINDIA2019-2551.10.1115/GTINDIA2019-2551
24.
Deng
,
H.
,
Wang
,
K.
,
Zhu
,
J.
, and
Pan
,
W.
,
2013
, “
Experimental Study on Heat Transfer and Flow Resistance in Improved Latticework Cooling Channels
,”
J. Therm. Sci.
,
22
(
3
), pp.
250
256
.10.1007/s11630-013-0620-3
25.
Bu
,
S.
,
Yang
,
L.
,
Qiu
,
H.
,
Luan
,
Y.
, and
Sun
,
H.
,
2017
, “
Effect of Sidewall Slots and Pin Fins on the Performance of Latticework Cooling Channel for Turbine Blades
,”
Appl. Therm. Eng.
,
117
, pp.
275
288
.10.1016/j.applthermaleng.2017.01.110
26.
Prajapati
,
A. N.
, and
Tariq
,
A.
,
2018
, “
Thermal Visualization and Performance Evaluation of the Open Matrix Structures Using Liquid Crystal Thermography
,”
J. Flow Visualization Image Process.
,
25
(
3–4
), pp.
277
295
.10.1615/JFlowVisImageProc.2018027508
27.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.