Abstract

The heat transfer effect of a sectioned wall made of five volumes filled with a phase change material (PCM) coupled to an air cavity is presented. The analysis system was equipped with a heat source next to the sectioned wall and an opposite isothermal wall. The experimental study was carried out by measuring the temperature of the five PCM volumes, likewise in four profiles along the air cavity. For the numerical formulation of the phase change of the PCM wall, the enthalpy method was used. With the validated model, the temperature fields, velocity contours, liquid fraction contours, and heat transfer coefficients are presented and discussed. The comparison between the numerical model and the experimental data presented a general average percentage difference in the range of 3.8–7% for the temperature of the air profiles, while for the PCM was 0.9–3.2%. The numerical results showed that the amount of liquid PCM in the enclosure can be reduced by dividing the wall into segments. Additionally, the heat transfer mechanism of conduction was noted between PCM volumes due to the union of these.

References

1.
Department of Economic and Social Affairs, United Nations
,
2019
, “
World Populations Prospects 2019
,” New York, accessed July, 2020, https://population.un.org/wpp/DataQuery/
2.
World Energy Council
,
2019
, “
World Energy Scenarios 2019: Exploring Innovation Pathways to 2040
,” World Energy Council, London, UK.
3.
International Energy Agency
,
2018
, “
The Future of Cooling: Opportunities for Energy-Efficient Air Conditioning
,” IEA, France.
4.
Piselli
,
C.
,
Prabhakar
,
M.
,
de Gracia
,
A.
,
Saffari
,
M.
,
Pisello
,
A. L.
, and
Cabeza
,
L. F.
,
2020
, “
Optimal Control of Natural Ventilation as Passive Cooling Strategy for Improving the Energy Performance of Building Envelope With PCM Integration
,”
Renew. Energy
,
162
, pp.
171
181
.10.1016/j.renene.2020.07.043
5.
Kośny
,
J.
,
2015
,
PCM-Enhanced Building Components. An Application of Phase Change Materials in Building Envelopes and Internal Structures
,
Springer International Publishing
,
Switzerland
.
6.
Mehling
,
H.
, and
Cabeza
, ·
L. F.
,
2008
,
Heat and Cold Storage With PCM an Up to Date Introduction Into Basics and Applications
,
Springer-Verlag
,
Berlin-Heidelberg
.
7.
de Gracia
,
A.
, and
Cabeza
,
L. F.
,
2015
, “
Phase Change Materials and Thermal Energy Storage for Buildings
,”
Energy Build.
,
103
, pp.
414
419
.10.1016/j.enbuild.2015.06.007
8.
Cabeza
,
L. F.
,
Castell
,
A.
,
Barreneche
,
C.
,
de Gracia
,
A.
, and
Fernández
,
A. I.
,
2011
, “
Materials Used as PCM in Thermal Energy Storage in Buildings: A Review
,”
Renewable Sustainable Energy Rev
,.
15
(
3
), pp.
1675
1695
.10.1016/j.rser.2010.11.018
9.
David
,
D.
,
Kuznik
,
F.
, and
Roux
,
J. J.
,
2011
, “
Numerical Study of the Influence of the Convective Heat Transfer on the Dynamical Behavior of a Phase Change Material Wall
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3117
3124
.10.1016/j.applthermaleng.2011.04.001
10.
Ye
,
W. B.
,
Zhu
,
D. S.
, and
Wang
,
N.
,
2012
, “
Fluid Flow and Heat Transfer in a Latent Thermal Energy Unit with Different Phase Change Material (PCM) Cavity Volume Fractions
,”
Appl. Therm. Eng.
,
42
, pp.
49
57
.10.1016/j.applthermaleng.2012.03.002
11.
Sabbah
,
R.
,
Seyed-Yagoobi
,
J.
, and
Al-Hallaj
,
S.
,
2012
, “
Natural Convection with Micro-Encapsulated Phase Change Material
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
8
), p.
082503
.10.1115/1.4006158
12.
de Gracia
,
A.
,
Navarro
,
L.
,
Castell
,
A.
, and
Cabeza
,
L. F.
,
2013
, “
Numerical Study on the Thermal Performance of a Ventilated Facade with PCM
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
372
380
.10.1016/j.applthermaleng.2013.07.035
13.
Ye
,
W. B.
,
2016
, “
Thermal and Hydraulic Performance of Natural Convection in a Rectangular Storage Cavity
,”
Appl. Therm. Eng.
,
93
, pp.
1114
1123
.10.1016/j.applthermaleng.2015.10.083
14.
Bondareva
,
N. S.
, and
Sheremet
,
M. A.
,
2017
, “
Flow and Heat Transfer Evolution of PCM Due to Natural Convection Melting in a Square Cavity with a Local Heater
,”
Int. J. Mech. Sci.
,
134
, pp.
610
619
.10.1016/j.ijmecsci.2017.10.031
15.
Kharbouch
,
Y.
,
Mimet
,
A.
, and
El Ganaoui
,
M.
,
2017
, “
Thermal Impact Study of a Bio-Based Wall Coupled with an Inner y of Using
,”
Energy Procedia
,
139
, pp.
10
15
.10.1016/j.egypro.2017.11.165
16.
Rao
,
Z.
,
Huo
,
Y.
, and
Li
,
Y.
,
2018
, “
The Lattice Boltzmann Investigation for the Melting Process of Phase Change Material in an Inclined Cavity
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
1
), p.
012301
.10.1115/1.4037908
17.
Fateh
,
A.
,
Borelli
,
D.
,
Devia
,
F.
, and
Weinläder
,
H.
,
2018
, “
Summer Thermal Performances of PCM-Integrated Insulation Layers for Light-Weight Building Walls Effect of Orientation and Melting Point Temperature
,”
Therm. Sci. Eng. Prog.
,
6
, pp.
361
369
.10.1016/j.tsep.2017.12.012
18.
Iten
,
M.
,
Liu
,
S.
, and
Shukla
,
A.
,
2018
, “
Experimental Validation of an Air-PCM Storage Unit Comparing the Effective Heat Capacity and Enthalpy Methods Through CFD Simulations
,”
Energy
,
155
, pp.
495
503
.10.1016/j.energy.2018.04.128
19.
Bouhal
,
T.
,
Meghari
,
Z.
,
Dîn Fertahi
,
S.
,
El Rhafiki
,
T.
,
Kousksou
,
T.
,
Jamil
,
A.
, and
Ben Ghoulam
,
E.
,
2018
, “
Parametric CFD Analysis and Impact of PCM Intrinsic Parameters on Melting Process Inside Enclosure Integrating Fins: Solar Building Applications
,”
J. Build. Eng.
,
20
, pp.
634
646
.10.1016/j.jobe.2018.09.016
20.
Huo
,
Y.
, and
Rao
,
Z.
,
2018
, “
The Enthalpy-Transforming-Based Lattice Boltzmann Model for Solid–Liquid Phase Change
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
10
), p.
012301
.10.1115/1.4040345
21.
Li
,
S.
,
Sun
,
Z.
,
Xu
,
B.
, and
Hong
,
Y.
,
2018
, “
Melting of Phase Change Material from An Isothermal Vertical Wall in a Semi-Enclosure
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1041
1052
.10.1016/j.ijheatmasstransfer.2018.08.101
22.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2020
, “
Mixed Convection in a PCM Filled Cavity Under the Influence of a Rotating Cylinder
,”
Sol Energy
,
200
, pp.
61
75
.10.1016/j.solener.2019.05.062
23.
Arıcı
,
M.
,
Bilgin
,
F.
,
Nižetić
,
S.
, and
Karabay
,
H.
,
2020
, “
PCM Integrated to External Building Walls: An Optimization Study on Maximum Activation of Latent Heat
,”
Appl. Therm. Eng.
,
165
, p.
114560
.10.1016/j.applthermaleng.2019.114560
24.
Pirasaci
,
T.
,
2020
, “
Investigation of Phase State and Heat Storage Form of the Phase Change Material (PCM) Layer Integrated into the Exterior Walls of the Residential-Apartment During Heating Season
,”
Energy
,
207
, p.
118176
.10.1016/j.energy.2020.118176
25.
Kishore
,
R. A.
,
Bianchi
,
M. V. A.
,
Booten
,
C.
,
Vidal
,
J.
, and
Jackson
,
R.
,
2020
, “
Optimizing PCM-Integrated Walls for Potential Energy Savings in U.S. Buildings
,”
Energy Build.
,
226
, p.
110355
.10.1016/j.enbuild.2020.110355
26.
Yan
,
T.
,
Xu
,
X.
,
Gao
,
J.
,
Luo
,
Y.
, and
Yu
,
J.
,
2020
, “
Performance Evaluation of a PCM-Embedded Wall Integrated with a Nocturnal Sky Radiator
,”
Energy
,
210
, p.
118412
.10.1016/j.energy.2020.118412
27.
Tunçbilek
,
E.
,
Arıcı
,
M.
,
Krajčík
,
M.
,
Nižetić
,
S.
, and
Karaba
,
H.
,
2020
, “
Thermal Performance Based Optimization of an Office Wall Containing PCM Under Intermittent Cooling Operation
,”
Appl. Therm. Eng.
,
179
, p.
115750
.10.1016/j.applthermaleng.2020.115750
28.
Benkaddour
,
A.
,
Faraji
,
M.
, and
Faraji
,
H.
,
2020
, “
Numerical Study of the Thermal Energy Storage Behavior of a Novel Composite PCM/Concrete Wall Integrated Solar Collector
,”
Mater. Today Proc.
,
30
, pp.
905
908
.10.1016/j.matpr.2020.04.348
29.
Liu
,
H.
, and
Awbi
,
H. B.
,
2009
, “
Performance of Phase Change Material Boards Under Natural Convection
,”
Build Environ.
,
44
, pp.
1788
1793
.10.1016/j.buildenv.2008.12.002
30.
Jin
,
X.
,
Medina
,
M. A.
, and
Zhang
,
X.
,
2013
, “
On the Importance of the Location of PCMs in Building Walls for Enhanced Thermal Performance
,”
Appl. Energy
,
106
, pp.
72
78
.10.1016/j.apenergy.2012.12.079
31.
Jin
,
X.
,
Zhang
,
S.
,
Xu
,
X.
, and
Zhang
,
X.
,
2014
, “
Effects of PCM State on Its Phase Change Performance and the Thermal Performance of Building Walls
,”
Build Environ.
,
81
, pp.
334
339
.10.1016/j.buildenv.2014.07.012
32.
Soares
,
N.
,
Gaspar
,
A. R.
,
Santos
,
P.
, and
Costa
,
J. J.
,
2016
, “
Experimental Evaluation of the Heat Transfer Through Small PCM-Based Thermal Energy Storage Units for Building Applications
,”
Energy Build.
,
116
, pp.
18
34
.10.1016/j.enbuild.2016.01.003
33.
Gharbi
,
S.
,
Harmand
,
S.
, and
Jabrallah
,
S. B.
,
2017
, “
Experimental Study of the Cooling Performance of Phase Change Material with Discrete Heat Sources – Continuous and Intermittent Regimes
,”
Appl. Therm. Eng.
,
111
, pp.
103
111
.10.1016/j.applthermaleng.2016.06.109
34.
Gounni
,
A.
, and
El Alami
,
M.
,
2017
, “
The Optimal Allocation of the PCM Within a Composite Wall for Surface Temperature and Heat Flux Reduction: An Experimental Approach
,”
Appl. Therm. Eng.
,
127
, pp.
1488
1494
.10.1016/j.applthermaleng.2017.08.168
35.
Sun
,
X.
,
Chu
,
Y.
,
Mo
,
Y.
,
Fan
,
S.
, and
Liao
,
S.
,
2018
, “
Experimental Investigations on the Heat Transfer of Melting Phase Change Material (PCM)
,”
Energy Procedia
,
152
, pp.
186
191
.10.1016/j.egypro.2018.09.079
36.
Lamberg
,
P.
,
Lehtiniemi
,
R.
, and
Henell
,
A. M.
,
2004
, “
Numerical and Experimental Investigation of Melting and Freezing Processes in Phase Change Material Storage
,”
Int. J. Therm. Sci.
,
43
(
3
), pp.
277
287
.10.1016/j.ijthermalsci.2003.07.001
37.
Labihi
,
A.
,
Aitlahbib
,
F.
,
Chehouani
,
H.
,
Benhamou
,
B.
,
Ouikhalfan
,
M.
,
Croitoru
,
C.
, and
Nastase
,
I.
,
2017
, “
Effect of Phase Change Material Wall on Natural Convection Heat Transfer Inside an Air Filled Enclosure
,”
Appl. Therm. Eng.
,
126
, pp.
305
314
.10.1016/j.applthermaleng.2017.07.112
38.
Colla
,
L.
,
Ercole
,
D.
,
Fedele
,
L.
,
Mancin
,
S.
,
Manca
,
O.
, and
Bobbo
,
S.
,
2017
, “
Nano-Phase Change Materials for Electronics Cooling Applications
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
5
), p.
052406
.10.1115/1.4036017
39.
Mehdaoui
,
F.
,
Hazami
,
M.
,
Messaouda
,
A.
,
Taghouti
,
H.
, and
Guizani
,
A. A.
,
2019
, “
Thermal Testing and Numerical Simulation of PCM Wall Integrated Inside a Test Cell on a Small Scale and Subjected to the Thermal Stresses
,”
Renew. Energy
,
135
, pp.
597
607
.10.1016/j.renene.2018.12.029
40.
Moreno
,
S.
,
Hinojosa
,
J. F.
,
Hernández-López
,
I.
, and
Xaman
,
J.
,
2020
, “
Numerical and Experimental Study of heat Transfer in a Cubic Cavity with a PCM in a Vertical Heated Wall
,”
Appl. Therm. Eng.
,
178
, p.
115647
.10.1016/j.applthermaleng.2020.115647
41.
Choi
,
S. H.
,
Park
,
J.
,
Ko
,
H. S.
, and
Karng
,
S. W.
,
2020
, “
Heat Penetration Reduction Through PCM Walls Via Bubble Injections in Buildings
,”
Energy Convers. Manag.
,
221
, p.
113187
.10.1016/j.enconman.2020.113187
42.
Gao
,
Y.
,
He
,
F.
,
Meng
,
X.
,
Wang
,
Z.
,
Zhang
,
M.
,
Yu
,
H.
, and
Gao
,
W.
,
2020
, “
Thermal Behavior Analysis of Hollow Bricks Filled with Phase-Change Material (PCM)
,”
J. Build. Eng.
,
31
, p.
101447
.10.1016/j.jobe.2020.101447
43.
Voller
,
V. R.
, and
Shadabi
,
L.
,
1984
, “
Enthalpy Methods for Tracking a Phase Change Boundary in Two Dimensions
,”
Int. Commun. Heat Mass Transfer
,
11
(
3
), pp.
239
249
.10.1016/0735-1933(84)90040-X
44.
Voller
,
V. R.
,
Cross
,
M.
, and
Markatos
,
N. C.
,
1987
, “
An Enthalpy Method for Convection/Diffusion Phase Change
,”
Int. J. Numer. Methods Eng.
,
24
(
1
), pp.
271
284
.10.1002/nme.1620240119
45.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer
,
13
(
3
), pp.
297
318
.10.1080/10407788808913615
46.
Swaminathan
,
C. R.
, and
Voller
,
V. R.
,
1993
, “
On the Enthalpy Method
,”
Int. J. Num. Meth. Heat Fluid Flow
,
3
(
3
), pp.
233
244
.10.1108/eb017528
47.
Sarbu
,
I.
, and
Sebarchievici
,
C.
,
2017
,
Solar Heating and Cooling Systems, Fundamentals, Experiments and Applications
,
Academic Press
,
San Diego, CA
.
48.
ANSYS,
2013
,
ANSYS Fluent Theory Guide
,
ANSYS
, Canonsburg, PA.
49.
Vogel
,
J.
,
Felbinger
,
J.
, and
Johnson
,
M.
,
2016
, “
Natural Convection in High Temperature Flat Plate Latent Heat Thermal Energy Storage Systems
,”
Appl. Energy
,
184
, pp.
184
196
.10.1016/j.apenergy.2016.10.001
50.
Fadl
,
M.
, and
Eames
,
P. C.
,
2019
, “
Numerical Investigation of the Influence of Mushy Zone Parameter Amush on Heat Transfer Characteristics in Vertically and Horizontally Oriented Thermal Energy Storage Systems
,”
Appl. Therm. Eng.
,
151
, pp.
90
99
.10.1016/j.applthermaleng.2019.01.102
51.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
New York
.
52.
Blazek
,
J.
,
2015
,
Computational Fluid Dynamics: Principles and Applications
, 3rd ed.,
Butterworth-Heinemann
,
Holland
.
53.
PureTemp,
2020
, “
PureTemp 29 Technical Data Sheet
,” PureTemp LLC, MN, accessed July, 2020, https://www.puretemp.com/stories/puretemp-technical-data-sheets
54.
Solomon
,
A.
,
1981
, “
!A Note on the Stefan Number in Slab Melting and Solidification
,”
Lett. Heat Mass Transfer
,
8
(
3
), pp.
229
235
.10.1016/0094-4548(81)90017-5
You do not currently have access to this content.