Abstract

By integrating wave-type analysis and fluctuation-dissipation theorem, the enhancement of photon tunneling distance in near field thermal radiation through metallic nanopatterns with/without dielectric structures is theoretically studied. When metallic patterns are in the immediate proximity of the conductive emitter, substantial thermal electric enhancement at surface plasmon frequency is observed between the metallic patterns and the emitter when the periodicity of the thermal electric field along the emitter surface is around integer times of the period of the metallic patterns. The mechanism of field amplification is similar to Fabry–Perot type resonance between two reflecting surfaces. The strong thermal electric field from resonance allows long-distance photon tunneling observed in near field radiation at a ∼5 μm separation distance when the same metallic patterns are placed on the collector surfaces. This value is nearly 50 times longer than that with bared emitter surfaces. This long-distance photon tunneling can also happen at a broader range of parallel wavenumbers (i.e., not determined by the period of the metallic patterns) at the surface plasmon frequency when the periodic metallic patterns' sizes are different each period. However, increasing the range of parallel wavenumbers in long-distance photon tunneling with this approach can reduce the strength of photon tunneling. The reduced tunneling strength can be brought up by attaching high refractive index dielectric resonators on top of the metallic patterns. The dielectric resonators on top of the metallic patterns show additional Mie-type resonance when displacement current is induced at the interface between the metallic patterns and the high refractive index dielectric. The higher intensity long-distance photon tunneling with a broad range of parallel wavenumbers can be valuable in harvesting the high intensity and high quality near field radiative energy with engineering feasible micron level vacuum gaps.

References

1.
Boyce
,
M. P.
,
2010
,
Handbook for Cogeneration and Combined Cycle Power Plants
, 2nd ed.,
ASME Press
, New York.
2.
Ferguson
,
C. R.
,
1986
,
Internal Combustion Engines, Applied Thermosciences
,
Wiley
, Hoboken, NJ.
3.
Chubb
,
D. L.
,
2007
,
Fundamentals of Thermophotovoltaic Energy Conversion
, 1st ed.,
Elsevier
, Amsterdam, The Netherlands.
4.
Juliani
,
A. J.
,
2015
,
Inquiry and Innovation in the Classroom: Using 20% Time, Genius Hour, and PBL to Drive Student Success
,
Routledge
, New York.
5.
Bisquert
,
J.
,
2018
,
The Physics of Solar Cells: Perovskites, Organics, and Photovoltaic Fundamentals
,
CRC Press, Taylor & Francis Group
, Boca Raton, FL.
6.
Basu
,
S.
,
2016
,
Near-Field Radiative Heat Transfer Across Nanometer Vacuum Gaps: Fundamentals and Applications
,
Elsevier
, Amsterdam, The Netherlands.
7.
Hsu
,
W. C.
,
Tong
,
J. K.
,
Liao
,
B. L.
,
Huang
,
Y.
,
Boriskina
,
S. V.
, and
Chen
,
G.
,
2016
, “
Entropic and Near-Field Improvements of Thermoradiative Cells
,”
Sci. Rep.
,
6
(
1
), pp.
1
10
.10.1038/srep34837
8.
Karalis
,
A.
, and
Joannopoulos
,
J. D.
,
2016
, “‘
Squeezing’ Near-Field Thermal Emission for Ultra-Efficient High-Power Thermophotovoltaic Conversion
,”
Sci. Rep.
,
6
(
1
), pp.
1
12
.10.1038/srep28472
9.
Zhao
,
B.
,
Chen
,
K. F.
,
Buddhiraju
,
S.
,
Bhatt
,
G.
,
Lipson
,
M.
, and
Fan
,
S. H.
,
2017
, “
High-Performance Near-Field Thermophotovoltaics for Waste Heat Recovery
,”
Nano Energy
,
41
, pp.
344
350
.10.1016/j.nanoen.2017.09.054
10.
Yu
,
H. T.
,
Duan
,
Y. Y.
, and
Yang
,
Z.
,
2018
, “
Selectively Enhanced Near-Field Radiative Transfer Between Plasmonic Emitter and GaSb With Nanohole and Nanowire Periodic Arrays for Thermophotovoltaics
,”
Int. J. Heat Mass Transfer
,
123
, pp.
67
74
.10.1016/j.ijheatmasstransfer.2018.02.085
11.
Mittapally
,
R.
,
Lee
,
B.
,
Zhu
,
L.
,
Reihani
,
A.
,
Lim
,
J. W.
,
Fan
,
D.
,
Forrest
,
S. R.
,
Reddy
,
P.
, and
Meyhofer
,
E.
,
2021
, “
Near-Field Thermophotovoltaics for Efficient Heat to Electricity Conversion at High Power Density
,”
Nat. Commun.
,
12
(
1
), p.
4364
.10.1038/s41467-021-24587-7
12.
Inoue
,
T.
,
Ikeda
,
K.
,
Song
,
B. S.
,
Suzuki
,
T.
,
Ishino
,
K.
,
Asano
,
T.
, and
Noda
,
S.
,
2021
, “
Integrated Near-Field Thermophotovoltaic Device Overcoming Blackbody Limit
,”
ACS Photonics
,
8
(
8
), pp.
2466
2472
.10.1021/acsphotonics.1c00698
13.
Marconot
,
O.
,
Juneau-Fecteau
,
A.
, and
Fréchette
,
L. G.
,
2021
, “
Toward Applications of Near-Field Radiative Heat Transfer With Micro-Hotplates
,”
Sci. Rep.
,
11
(
1
), p.
14347
.10.1038/s41598-021-93695-7
14.
DeSutter
,
J.
,
Tang
,
L.
, and
Francoeur
,
M.
,
2019
, “
A near-Field Radiative Heat Transfer Device
,”
Nat. Nanotechnol.
,
14
(
8
), pp.
751
755
.10.1038/s41565-019-0483-1
15.
Tang
,
L.
,
DeSutter
,
J.
, and
Francoeur
,
M.
,
2020
, “
Near-Field Radiative Heat Transfer Between Dissimilar Materials Mediated by Coupled Surface Phonon- and Plasmon-Polaritons
,”
ACS Photonics
,
7
(
5
), pp.
1304
1311
.10.1021/acsphotonics.0c00404
16.
Basu
,
S.
,
Zhang
,
Z. M.
, and
Fu
,
C. J.
,
2009
, “
Review of Near-Field Thermal Radiation and Its Application to Energy Conversion
,”
Int. J. Energy Res.
,
33
(
13
), pp.
1203
1232
.10.1002/er.1607
17.
Hu
,
L.
,
Narayanaswamy
,
A.
,
Chen
,
X. Y.
, and
Chen
,
G.
,
2008
, “
Near-Field Thermal Radiation Between Two Closely Spaced Glass Plates Exceeding Planck's Blackbody Radiation Law
,”
Appl. Phys. Lett.
,
92
(
13
), p.
133106
.10.1063/1.2905286
18.
Novotny
,
L.
, and
Hecht
,
B.
,
2012
,
Principles of Nano-Optics
, 2nd ed.,
Cambridge University Press
, Cambridge, UK.
19.
Jackson
,
J. D.
,
1999
,
Classical Electrodynamics
, 3rd ed.,
Wiley
, Hoboken, NJ.
20.
Wen
,
S. B.
,
2010
, “
Direct Numerical Simulation of Near Field Thermal Radiation Based on Wiener Chaos Expansion of Thermal Fluctuating Current
,”
J Heat Transfer-Trans. ASME
,
132
(
7
), p.
072704
.10.1115/1.4000995
21.
Wen
,
S. B.
,
2021
, “
A Simple Approach to Evaluate Near Field Thermal Radiation From Emitters With Layered Structures and Temperature Variations in One Direction
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
2
), p.
022801
.10.1115/1.4048949
22.
Li
,
L. F.
,
1997
, “
New Formulation of the Fourier Modal Method for Crossed Surface-Relief Gratings
,”
J. Opt. Soc. Am. A
,
14
(
10
), pp.
2758
2767
.10.1364/JOSAA.14.002758
23.
Li
,
L. F.
,
2003
, “
Fourier Modal Method for Crossed Anisotropic Gratings With Arbitrary Permittivity and Permeability Tensors
,”
J. Opt. A.: Pure Appl. Opt.
,
5
(
4
), pp.
345
355
.10.1088/1464-4258/5/4/307
24.
Joulain
,
K.
,
Mulet
,
J. P.
,
Marquier
,
F.
,
Carminati
,
R.
, and
Greffet
,
J. J.
,
2005
, “
Surface Electromagnetic Waves Thermally Excited: Radiative Heat Transfer, Coherence Properties and Casimir Forces Revisited in the Near Field
,”
Surf. Sci. Rep.
,
57
(
3–4
), pp.
59
112
.10.1016/j.surfrep.2004.12.002
25.
Mulet
,
J. P.
,
Joulain
,
K.
,
Carminati
,
R.
, and
Greffet
,
J. J.
,
2002
, “
Enhanced Radiative Heat Transfer at Nanometric Distances
,”
Microscale Thermophys. Eng.
,
6
(
3
), pp.
209
222
.10.1080/10893950290053321
26.
Song
,
B.
,
Fiorino
,
A.
,
Meyhofer
,
E.
, and
Reddy
,
P.
,
2015
, “
Near-Field Radiative Thermal Transport: From Theory to Experiment
,”
AIP Adv.
,
5
(
5
), p.
053503
.10.1063/1.4919048
27.
Zhong
,
Y. J.
,
Malagari
,
S. D.
,
Hamilton
,
T.
, and
Wasserman
,
D.
,
2015
, “
Review of Mid-Infrared Plasmonic Materials
,”
J. Nanophotonics
,
9
(
1
), p.
093791
.10.1117/1.JNP.9.093791
28.
Formiga
,
F. R.
,
Severino
,
P.
, and
Inamuddin
,
D.
,
2021
,
Applications of Nanobiotechnology for Neglected Tropical Diseases
, 1 ed.,
Elsevier
, Amsterdam, The Netherlands.
29.
Sangster
,
A. J.
,
2019
,
Signals and Communication Technology
,
Springer International Publishing
, Cham, Switzerland.
You do not currently have access to this content.