Abstract

GaN LEDs are usually encapsulated with a cured phosphor-epoxy mixture for the light conversions from blue to white light. However, during this conversion, significant self-heating problems may occur due to insufficient cooling capabilities against the increasing power demand. Moreover, possible fracture and ultimate device failures were intersected with large displacements inside the LED package with these self-heating problems. Thus, including phosphor in a high brightness LED package is complex. Therefore, three coating technologies were investigated for an LED package's higher lifetime and ultimate optical output. Those are phosphor dispersed inside the liquid coolant as particles, remote phosphor-coated under the dome, and remote phosphor-coated under the dome with immersion cooling with dielectric liquid coolant. Their results were compared with the commonly used over chip coating application chosen as the baseline case in the current study. Furthermore, computational models and experimental studies were performed for proposed coating configurations. The chosen baseline case has shown higher junction temperatures, lower conversion efficiency, and undesirable color shifts at critical temperatures. As the first proposed technique, dispersed phosphor particles inside the dielectric liquid coolant have resulted with almost similar conversion efficiency but with a lower thermal enhancement on the LED junction than the baseline case. The second technique, remote phosphor system has resulted in better junction temperatures and 23% higher optical extraction than the baseline case. On the other hand, the remote phosphor with immersion cooling has shown the lowest junction temperature levels and extended the lumen extraction limits of white LEDs above 53% as the third proposed technique.

References

1.
Schubert
,
E. F.
, and
Kim
,
J. K.
,
2005
, “
Solid-State Light Sources Getting Smart
,”
Science
,
308
(
5726
), pp.
1274
1278
.10.1126/science.1108712
2.
Feezell
,
D.
, and
Nakamura
,
S.
,
2018
, “
Invention, Development, and Status of the Blue Light-Emitting Diode, the Enabler of Solid-State Lighting
,”
C. R. Phys.
,
19
(
3
), pp.
113
133
.10.1016/j.crhy.2017.12.001
3.
Arik
,
M.
,
Setlur
,
A.
,
Weaver
,
S.
,
Haitko
,
D.
, and
Petroski
,
J.
,
2007
, “
Chip to System Levels Thermal Needs and Alternative Thermal Technologies for High Brightness LEDS
,”
ASME. J. Electron. Packag.
,
129
(3), pp.
328
338
.10.1115/1.2753958
4.
Fulmek
,
P.
,
Nicolics
,
J.
,
Nemitz
,
W.
, and
Wenzl
,
F. P.
,
2017
, “
On the İmpact of the Temperature Dependency of the Phosphor Quantum Efficiency on Correlated Color Temperature Stability in Phosphor Converted LEDs
,”
Mater. Chem. Phys.
,
196
, pp.
82
91
.10.1016/j.matchemphys.2017.04.044
5.
Tran
,
N. T.
,
You
,
J. P.
, and
Shi
,
F. G.
,
2009
, “
Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted White LED
,”
J. Lightwave Technol.
,
27
(
22
), pp.
5145
5150
.10.1109/JLT.2009.2028087
6.
Yan
,
X.
,
Mont
,
F. W.
,
Poxson
,
D. J.
,
Schubert
,
M. F.
,
Kim
,
J. K.
,
Cho
,
J.
, and
Schubert
,
E. F.
,
2009
, “
Refractive-İndex-Matched İndium–Tin-Oxide Electrodes for Liquid Crystal Displays
,”
Jpn. J. Appl. Phys.
,
48
(
12
), p.
120203
.10.1143/JJAP.48.120203
7.
Lunia
,
A. K.
,
Patra
,
S. K.
,
Kumar
,
S.
,
Singh
,
S.
,
Pal
,
S.
, and
Dhanavantri
,
C.
,
2014
, “
Theoretical Analysis of Blue to White Down Conversion for Light-Emitting Diode Light With Yttrium Aluminum Garnet Phosphor
,”
J. Photonics Energy
,
4
(
1
), p.
043596
.10.1117/1.JPE.4.043596
8.
Arik
,
M.
,
Weaver
,
S.
,
Becker
,
C.
,
Hsing
,
M.
, and
Srivastava
,
A.
,
2003
, “
Effects of Localized Heat Generations Due to the Color Conversion in Phosphor Particles and Layers of High Brightness Light Emitting Diodes
,”
ASME
Paper No. IPACK2003-35015.10.1115/IPACK2003-35015
9.
Setlur
,
A. A.
,
2009
, “
Phosphors for LED-Based Solid-State Lighting
,”
Electrochem. Soc. Interface
,
18
(
4
), pp.
32
36
.10.1149/2.F04094IF
10.
Tamdogan
,
E.
, and
Arik
,
M.
,
2015
, “
Natural Convection İmmersion Cooling With Enhanced Optical Performance of Light-Emitting Diode Systems
,”
ASME J. Electron. Packaging
,
137
(
4
), p.
041006
.10.1115/1.4031480
11.
Arik
,
M.
,
Kulkarni
,
K. S.
,
Royce
,
C.
, and
Weaver
,
S.
,
2014
, “
Developing a Standard Measurement and Calculation Procedure for High Brightness LED Junction Temperature
,”
Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
, Orlando, FL, May 27–30, pp.
170
177
.
12.
Ma
,
Y.
, and
Luo
,
X.
,
2019
, “
Two-Dimensional Axisymmetric Opto-Thermal Phosphor Modeling Based on Fluorescent Radiative Transfer Equation
,”
J. Luminescence
,
214
, p.
116589
.10.1016/j.jlumin.2019.116589
13.
Nicolics
,
J.
,
Fulmek
,
P.
,
Nemitz
,
W.
, and
Wenzl
,
F. P.
,
2018
, “
Analysis of the Local Temperature Distribution in Color Conversion Elements of Phosphor Converted Light-Emitting Diodes
,”
Int. J. Heat Mass Transfer
,
116
, pp.
1096
1107
.10.1016/j.ijheatmasstransfer.2017.09.088
14.
Azarifar
,
M.
,
Cengiz
,
C.
, and
Arik
,
M.
,
2021
, “
Particle Based İnvestigation of Self-Heating Effect of Phosphor Particles in Phosphor Converted Light Emitting Diodes
,”
J. Lumin.
,
231
, p.
117782
.10.1016/j.jlumin.2020.117782
15.
Lin
,
X.
,
Mo
,
S.
,
Mo
,
B.
,
Jia
,
L.
,
Chen
,
Y.
, and
Cheng
,
Z.
,
2020
, “
Thermal Management of High-Power LED Based on Thermoelectric Cooler and Nanofluid-Cooled Microchannel Heat Sink
,”
Appl. Therm. Eng.
,
172
, p.
115165
.10.1016/j.applthermaleng.2020.115165
16.
Khandekar
,
S.
,
Sahu
,
G.
,
Muralidhar
,
K.
,
Gatapova
,
E. Y.
,
Kabov
,
O. A.
,
Hu
,
R.
,
Luo
,
X.
, and
Zhao
,
L.
,
2021
, “
Cooling of High-Power LEDs by Liquid Sprays: Challenges and Prospects
,”
Appl. Therm. Eng.
,
184
, p.
115640
.10.1016/j.applthermaleng.2020.115640
17.
Chung
,
Y. C.
,
Chung
,
H. H.
, and
Lin
,
S. H.
,
2021
, “
Improvement of Temperature and Optical Power of an LED by Using Microfluidic Circulating System of Graphene Solution
,”
Nanomaterials
,
11
(
7
), p.
1719
.10.3390/nano11071719
18.
Paniagua-Guerra
,
L. E.
,
Sehgal
,
S.
,
Gonzalez-Valle
,
C. U.
, and
Ramos-Alvarado
,
B.
,
2019
, “
Fractal Channel Manifolds for Microjet Liquid-Cooled Heat Sinks
,”
Int. J. Heat Mass Transfer
,
138
, pp.
257
266
.10.1016/j.ijheatmasstransfer.2019.04.039
19.
Deng
,
Z.
,
Shen
,
J.
,
Dai
,
W.
,
Li
,
K.
,
Song
,
Q.
,
Gong
,
W.
,
Dong
,
X.
, and
Gong
,
M.
,
2019
, “
Experimental Study on Cooling of High-Power Laser Diode Arrays Using Hybrid Microchannel and Slot Jet Array Heat Sink
,”
Appl. Therm. Eng.
,
162
, p.
114242
.10.1016/j.applthermaleng.2019.114242
20.
Tamdogan
,
E.
,
Arik
,
M.
, and
Dogruoz
,
M. B.
,
2013
, “
Direct Liquid Cooling of High Flux LED Systems: Hot Spot Abatement
,”
ASME
Paper No. 91-GT-063.10.1115/91-GT-063
21.
Bar-Cohen
,
A.
,
1993
, “
Thermal Management of Electronic Components With Dielectric Liquids
,”
JSME Int. J. Ser. B
,
36
(
1
), pp.
1
25
.10.1299/jsmeb.36.1
22.
Mohapatra
,
S. C.
, and
Loikits
,
D.
,
2005
, “
Advances in Liquid Coolant Technologies for Electronics Cooling
,”
Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium
, San Jose, CA, Mar. 15–17, pp.
354
360
.
23.
CREE-LED, 2015, Cree EZBright EZ1000 Green Gen II LEDs, accessed date July 15, 2022, https://cree-led.com
24.
Intematix, Phosphor, GAL550-02-13, accessed Sept. 26, 2022, https://intematix.com
25.
Weling
,
G.
,
Xuejiao
,
J.
,
Fei
,
Y.
,
Bifeng
,
C.
,
Wei
,
G.
,
Ying
,
L.
, and
Weiwei
,
Y.
,
2011
, “
Characteristics of High Power LEDs at High and Low Temperature
,”
J. Semiconductors
, ”
32
(
4
), p.
044007
.10.1088/1674-4926/32/4/044007
26.
3M, 2015, “3M™ Novec™ Engineered Fluid HFE-7200,” accessed July 15, https://3m.com
27.
ANSYS ICEPAK, “Electronics Cooling Simulation Software,” accessed Sept. 26, 2022, https://ansys.com
28.
Jayasinghe
,
L.
,
Dong
,
T.
, and
Narendran
,
N.
,
2007
, “
Is the Thermal Resistance Coefficient of High-Power LEDs Constant?
,”
Proc. SPIE
6669
, p.
666911
.10.1117/12.738739
29.
Gan
,
Z.
,
Liu
,
S.
,
Luo
,
X.
,
Cheng
,
T.
, and
Xiong
,
W.
,
2007
, “
Thermal Analysis of an 80 W Light-Emitting Diode Street Lamp
,”
IET Optoelectron.
,
1
(
5
), pp.
191
196
.10.1049/iet-opt:20070006
30.
Khokhlev
,
O. V.
,
Bord
,
O. V.
,
Bogdanov
,
M. V.
,
Bulashevich
,
K. A.
,
Ramm
,
M. S.
,
Evstratov
,
I. Y.
, and
Karpov
,
S. Y.
,
2010
, “
Effect of Temperature and Current Variation on the Colour Quality of White Light Emitting Diodes
,”
International Symposium on the Science and Technology of Light Sources
,
Eidhoven, The Netherlands
.
You do not currently have access to this content.