Abstract

This paper demonstrates that the well-known method for calculating view factors, the Monte Carlo method, combined with ray tracing is not necessarily the most efficient strategy. The Monte Carlo method and quasi-Monte Carlo method combined with numerical integration, provided the surfaces in a configuration are not too close together, are more accurate for the same run-time than a ray tracing-based Monte Carlo method. The Monte Carlo method based on numerical integration is complementary to the Monte Carlo method based on ray tracing. When many rays are required to calculate an accurate view factor, few function evaluations in a numerical integration approach are necessary to achieve the same accuracy. Where the surfaces in a configuration are touching, the Monte Carlo method with numerical integration converges to the exact view factor very slowly due to a singularity in the view factor multi-integral. For these configurations, a hybrid Monte Carlo method and quasi-Monte Carlo method are demonstrated to be the stochastic methods of choice.

References

1.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
, 2nd ed,
Academic Press
,
New York
.
2.
James
,
G.
,
1992
,
Modern Engineering Mathematics
,
Pearson
,
UK
.
3.
Rao
,
V. R.
, and
Sustri
,
V. M. K.
,
1996
, “
Efficient Evaluation of Diffuse View Factors for Radiation
,”
Int. J. Heat Mass Transfer
,
39
, pp.
1281
1286
.10.1016/0017-9310(95)00203-0
4.
Mazumder
,
S.
, and
Ravishankar
,
M.
,
2012
, “
General Procedure for Calculation of Diffuse View Factors Between Arbitrary Planar Polygons
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
7330
7335
.10.1016/j.ijheatmasstransfer.2012.07.066
5.
Francisco
,
S. C.
,
Raimundo
,
A. M.
,
Gaspar
,
A. R.
,
Virgilio
,
A.
,
Oliveira
,
M.
, and
Quintela
,
D. A.
,
2014
, “
Calculation of View Factors for Complex Geometries Using Stokes' Theorem
,”
J. Build. Perf. Sim.
,
7
(
3
), pp.
203
216
.10.1080/19401493.2013.808266
6.
Howell
,
J. R.
, and
Daun
,
K. J.
,
2021
, “
The Past and Future of the Monte Carlo Method in Thermal Radiation Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
10
), p.
100801
.10.1115/1.4050719
7.
Gupta
,
M. K.
,
Bumtariya
,
K. J.
,
Shakla
,
H. A.
,
Patel
,
P.
, and
Khan
,
Z.
,
2017
, “
Methods for Evaluation of Radiation View Factor: A Review
,”
Mat. Today Proceed.
,
4
(
2
), pp.
1236
1243
.10.1016/j.matpr.2017.01.143
8.
Kounalakis
,
M. E.
,
Gore
,
J. P.
, and
Faeth
,
G. M.
,
1988
, “
Turbulence/Radiation Interactions in Nonpremixed Hydrogen/Air Flames
,”
22nd Symposium (Institute) Combustion
, Pittsburgh, July 24-29, pp.
1281
1290
.
9.
Cumber
,
P. S.
, and
Onokpe
,
O.
,
2013
, “
Turbulent Radiation Interaction in Jet Flames: Sensitivity to the PDF
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
250
264
.10.1016/j.ijheatmasstransfer.2012.10.032
10.
Cumber
,
P. S.
,
2013
, “
Efficient Modelling of Turbulence-Radiation Interaction in Hydrogen Jet Flames
,”
Num. Heat Transfer, Part B
,
63
(
2
), pp.
85
114
.10.1080/10407790.2013.740395
11.
Pope
,
S. B.
,
1981
, “
A Monte Carlo Method for the PDF Equations of Turbulent Reactive Flow
,”
Comb. Sci. Technol.
,
25
(
5–6
), pp.
159
174
.10.1080/00102208108547500
12.
Cumber
,
P. S.
,
2016
, “
Application of the PDF Transport Model to Non-Reacting Jets Using an Adaptive Monte-Carlo Method
,”
Num. Heat Transfer, Part B
,
70
(
2
), pp.
91
110
.10.1080/10407790.2016.1177414
13.
Lathrop
,
K. D.
,
1971
, “
Remedies for Ray Effects
,”
Nucl. Sci. Eng.
,
45
(
3
), pp.
255
268
.10.13182/NSE45-03-255
14.
Chai
,
J. C.
,
Haeok
,
S. L.
, and
Patankar
,
S. V.
,
1993
, “
Ray Effect and False Scattering in the Discrete Ordinates Method
,”
Num. Heat Transfer, Part B
,
24
(
4
), pp.
373
389
.10.1080/10407799308955899
15.
Cumber
,
P. S.
,
2000
, “
Ray Effect Mitigation in Jet Fire Radiation Modelling
,”
Int. J. Heat Mass Transfer
,
43
(
6
), pp.
935
943
.10.1016/S0017-9310(99)00172-6
16.
Fiveland
,
W. A.
,
1984
, “
Discrete Ordinates Solutions of the Radiative Transport Equation for Rectangular Enclosures
,”
ASME J. Heat Transfer-Trans. ASME
,
106
(
4
), pp.
699
706
.10.1115/1.3246741
17.
Lockwood
,
F. C.
, and
Shah
,
N. G.
,
1981
, “
A New Radiation Solution Method for Incorporation in General Combustion Prediction Procedures
,”
Symp. (Int.) Combust.
,
18
(
1
), pp.
1405
1414
. 10.1016/S0082-0784(81)80144-0
18.
Mazumder
,
S.
,
2006
, “
Methods to Accelerate Ray Tracing in the Monte Carlo Method for Surface-to-Surface Radiation Transport
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
9
), pp.
945
952
.10.1115/1.2241978
19.
Havran
,
V.
,
Kopal
,
T.
,
Bittner
,
J.
, and
Žára
,
J.
,
1997
, “
Fast Robust BSP Tree Traversal Algorithm for Ray Tracing
,”
J. Graph. Tools
,
2
(
4
), pp.
15
23
.10.1080/10867651.1997.10487481
20.
Mazumder
,
S.
, and
Kirsch
,
A.
,
2000
, “
A Fast Monte-Carlo Scheme for Thermal Radiation in Semiconductor Processing Applications
,”
Num. Heat Transfer, Part B
,
37
, pp.
185
199
.10.1080/104077900275486
21.
Biolabeling
,
M.
,
2005
, “
An Efficient Monte Carlo Approach for Determining Shape Factors
,”
Int. J. Mech. Eng. Educ.
,
33
, pp.
39
44
.10.7227/IJMEE.33.1.3
22.
Hoff
,
S. J.
, and
Janni
,
K. A.
,
1989
, “
Monte Carlo Technique for Determination of Thermal Radiation Shape Factors
,”
Trans. Am. Soc. Agri. Eng.
,
32
, pp.
1023
1028
.10.13031/2013.31108
23.
Hajji
,
A. R.
,
Mirhosseini
,
M.
,
Saboonchi
,
A.
, and
Moosavi
,
A.
,
2015
, “
Different Methods for Calculating a View Factor in Radiative Applications: Strip to In-Plane Parallel Semi-Cylinder
,”
J. Eng. Thermophys.
,
24
(
2
), pp.
169
180
.10.1134/S1810232815020071
24.
Vujicji
,
M. R.
,
Lavery
,
N. P.
, and
Brown
,
S. G. R.
,
2006
, “
View Factor Calculation Using the Monte Carlo Method and Numerical Sensitivity
,”
Commun. Num. Meth. Eng.
,
22
, pp.
197
203
.10.1002/cnm.805
25.
Mirhosseini
,
M.
, and
Saboonchi
,
A.
,
2011
, “
View Factor Calculation Using the Monte Carlo Method for a 3D Strip Element to Circular Cylinder
,”
Int. Commun. Heat Mass Transfer
,
38
(
6
), pp.
821
826
.10.1016/j.icheatmasstransfer.2011.03.022
26.
Maltby
,
J. D.
, and
Burns
,
P. J.
,
1991
, “
Performance, Accuracy and Convergence in a Three-Dimensional Monte-Carlo Radiation Heat Transfer Simulation
,”
Num. Heat Transfer, Part B
,
19
(
2
), pp.
191
209
.10.1080/10407799108944963
27.
Vujicic
,
M. R.
,
Lavery
,
N. P.
, and
Brown
,
S. G. R.
,
2006
, “
Numerical Sensitivity and View Factor Calculations Using the Monte Carlo Method
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
220
(
5
), pp.
697
702
.10.1243/09544062JMES139
28.
Walker
,
T.
,
Xue
,
S.-C.
, and
Barton
,
G. W.
,
2010
, “
Numerical Determination of Radiative View Factors Using Ray Tracing
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
7
), p.
072702
.10.1115/1.4000974
29.
He
,
F.
,
Shi
,
J.
,
Zhou
,
L.
,
Li
,
W.
, and
Li
,
X.
,
2018
, “
Monte Carlo Calculation of View Factors Between Some Complex Surfaces: Rectangular Plane and Parallel Cylinder, Rectangular Plane and Torus, Especially Cold-Rolled Strip and W-Shaped Radiant Tube in Continuous Annealing Furnace
,”
Int. J. Therm. Sci.
,
134
, pp.
465
474
.10.1016/j.ijthermalsci.2018.05.050
30.
Mirhosseini
,
M.
,
Rezania
,
A.
, and
Rosendahl
,
L.
,
2017
, “
View Factor of Solar Chimneys by Monte Carlo Method
,”
Energy Procedia
,
142
, pp.
513
518
.10.1016/j.egypro.2017.12.080
31.
Taylor
,
R. P.
,
Luck
,
R.
,
Hodge
,
B. K.
, and
Steele
,
W. G.
,
1995
, “
Uncertainty Analysis of Diffuse-Grey Radiation Enclosure Problems
,”
J. Thermophys. Heat Transfer
,
9
(
1
), pp.
63
69
.10.2514/3.629
32.
Daun
,
K. J.
,
Morton
,
D. P.
, and
Howell
,
J. R.
,
2005
, “
Smoothing Monte Carlo Exchange Factors Through Constrained Maximum Likelihood Estimation
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
10
), pp.
1124
1128
.10.1115/1.2035111
33.
Larsen
,
M. E.
, and
Howell
,
J. R.
,
1986
, “
Least-Squares Smoothing of Direct-Exchange Areas in Zonal Analysis
,”
ASME J. Heat Transfer-Trans. ASME
,
108
(
1
), pp.
239
242
.10.1115/1.3246898
34.
Murty
,
C. V. S.
, and
Murty
,
B. S. N.
,
1991
, “
Significance of Exchange Area Adjustment in Zone Modelling
,”
Int. J. Heat Mass Transfer
,
34
(
2
), pp.
499
503
.10.1016/0017-9310(91)90268-J
35.
Frank
,
A.
,
Heidemann
,
W.
, and
Spindler
,
K.
,
2016
, “
Modeling of the Surface-to-Surface Radiation Exchange Using a Monte Carlo Method
,”
J. Phys. Conf. Ser.
,
745
(
3
), p.
032143
.10.1088/1742-6596/745/3/032143
36.
Cumber
,
P. S.
,
2022
, “
View Factors – When is Ray Tracing a Good Idea
,”?
Int. J. Heat Mass Transfer
,
189
(
122698
), p.
122698
.10.1016/j.ijheatmasstransfer.2022.122698
37.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
1992
,
Numerical Recipes in Fortran 77
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
38.
Sobol
,
I. M.
,
1976
, “
Uniformly Distributed Sequences With an Additional Uniform Property
,”
USSR Comp. Math. Math. Phys.
,
16
(
5
), pp.
236
242
.10.1016/0041-5553(76)90154-3
39.
L'Ecuyer
,
P.
,
2004
, “
Quasi-Monte Carlo Methods in Finance
,”
IEEE Proceedings of the Winter Simulation Conference
, Edited by
R.G.
Ingalls
,
M. D.
Rossetti
,
J. S.
Smith
, and
B. A.
Peters
, Washington, DC, Dec. 5–8, pp.
1645
1655
.
40.
Cumber
,
P. S.
,
2009
, “
Accelerating Ray Convergence in Jet Fire Radiation Modelling Using Sobol Sequences
,”
Int. J. Therm. Sci.
,
48
(
7
), pp.
1338
1347
.10.1016/j.ijthermalsci.2008.11.007
41.
Cumber
,
P. S.
, and
Wilkinson
,
P.
,
2011
, “
Signal Processing, Sobol Sequences and Hot Sampling: Calculation of Incident Heat Flux Distributions Surrounding Diffusion Flames
,”
Int. J. Heat Mass Transfer
,
54
(
21–22
), pp.
4689
4701
.10.1016/j.ijheatmasstransfer.2011.06.008
42.
Modest
,
M. F.
,
2003
, “
Backward Monte Carlo Simulation in Radiative Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
62
, pp.
125
157
.10.1115/1.1518491
43.
Antonov
,
I. A.
, and
Saleev
,
V. M.
,
1979
, “
An Economic Method of Computing LP tau-Sequences
,”
USSR Comp. Math. Math. Phys.
,
19
(
1
), pp.
252
256
.10.1016/0041-5553(79)90085-5
44.
Howell
,
J. R.
,
1982
,
A Catalog of Radiation Configuration Factors
,
McGraw-Hill
,
New York
.
45.
Gross
,
U.
,
Spindler
,
K.
, and
Hahne
,
E.
,
1981
, “
Shape Factor Equations for Radiation Heat Transfer Between Plane Rectangular Surfaces of Arbitrary Position and Size With Rectangular Boundaries
,”
Lett. Heat Mass Transfer
,
8
(
3
), pp.
219
227
.10.1016/0094-4548(81)90016-3
You do not currently have access to this content.