Abstract

A numerical investigation is performed to analyze air's steady natural convection phenomena in an enclosure with partial active sidewalls. A partition is attached to the hot wall for different active locations to study the effect of the partition position on the heat transfer. First, a finite volume method solves the coupled equations of continuity, momentum, and energy. The SIMPLE algorithm is used to solve the pressure velocities coupling iteratively. Second, based on the obtained dimensionless velocity and temperature values, the distributions of the local entropy generation due to heat transfer and fluid friction and the total entropy generation are determined for different parameters. The results are presented graphically in streamlines, isotherms, and average Nusselt numbers. Three different configurations of active region arrangement are considered in this study, while the partition length has been changed. In order to identify the optimum location of the partition for better heat transfer, the effect of entropy generation has been studied. The heat transfer rate decreases with the increased partition length, especially for l = L/2. Thus, the maximum average Nusselt number occurs for the middle–middle arrangement, while the minimum one occurs for the bottom–bottom arrangement. The numerical investigations in this analysis are made over a wide range of parameters, Rayleigh number 103 to 105, dimensionless partitions length (l = L/8, L/4, L/2), and irreversibility coefficients 10−4< ϕ < 10−2; however, the Prandtl numbers was fixed to 0.71.

References

1.
Corcione
,
M.
,
2003
, “
Effects of the Thermal Boundary Conditions at the Sidewalls Upon Natural Convection in Rectangular Enclosures Heated From Below and Cooled From Above
,”
Int. J. Therm. Sci.
,
42
(
2
), pp.
199
208
.10.1016/S1290-0729(02)00019-4
2.
Turkoglu
,
H.
, and
Yucel
,
N.
,
1995
, “
Effect of Heater and Cooler Locations on Natural Convection in Square Cavities
,”
Numer. Heat Transfer Part A Appl.
,
27
, pp.
351
358
.10.1080/10407789508913705
3.
Valencia
,
A.
, and
Frederick
,
R.
,
1989
, “
Heat Transfer in Square Cavities With Partially Active Vertical Walls
,”
Int. J. Heat Mass Transfer
,
32
(
8
), pp.
1567
1574
.10.1016/0017-9310(89)90078-1
4.
Lakhal
,
K.
, and
Hasnaoui
,
M.
,
1994
, “
Convection Naturelle Dans Une Cavité Carrée Chauffée Périodiquement Par le Bas
,”
Rev. Gén. Therm.
, 33, pp. 392–393.
5.
Aydin
,
O.
, and
Yang
,
W.
,
2000
, “
Natural Convection in Enclosures With Localized Heating From Below and Symetrical Cooling From Sides
,”
Int. J. Numer. Methods Heat Fluid Flow
,
10
(
5
), pp.
518
529
.10.1108/09615530010338196
6.
Nithyadevi
,
N.
,
Kandaswamy
,
P.
, and
Lee
,
J.
,
2007
, “
Natural Convection in Rectangular Cavity With Partially Active Side Walls
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4688
4697
.10.1016/j.ijheatmasstransfer.2007.03.050
7.
Kuhn
,
T. E.
,
2006
, “
Solar Control: A General Evaluation Method for Facades With Venetian Blinds or Other Solar Control Systems
,”
Energy Build.
,
38
(
6
), pp.
648
660
.10.1016/j.enbuild.2005.10.002
8.
Paroncini
,
M.
, and
Corvaro
,
F.
,
2009
, “
Natural Convection in a Square Enclosure With a Hot Source
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1683
1695
.10.1016/j.ijthermalsci.2009.02.005
9.
Paroncini
,
M.
,
Corvaro
,
F.
,
Montucchiari
,
A.
, and
Nardini
,
G.
,
2012
, “
A Numerical and Experimental Analysis on Natural Convective Heat Transfer in a Square Enclosure With Partially Active Side Walls
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
118
125
.10.1016/j.expthermflusci.2011.09.004
10.
Basak
,
T.
,
Roy
,
S.
, and
Balakrishnan
,
A. R.
,
2006
, “
Effects of Thermal Boundary Conditions on Natural Convection Flows With in a Square Cavity
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4525
4535
.10.1016/j.ijheatmasstransfer.2006.05.015
11.
Oosthuizen
,
P. H.
, and
Paul
,
J. T.
,
2007
, “
Natural Convective Heat Transfer From a Narrow Vertical Flat Plate With a Uniform Heat Flux at the Surface
,”
ASME
Paper No. HT2007-321340.10.1115/HT2007-321340
12.
Pravez
,
A.
,
Ashok Kumar
,
B.
,
Kapoor
,
S. R.
, and
Ansari
,
A.
,
2012
, “
Numerical Investigation of Natural Convection in an Enclosure
,”
Int. J. Heat Mass Transfer
,
17
(
6
), pp.
2403
2414
.10.1016/j.cnsns.2011.09.004
13.
Abdullah
,
A.
,
Al-Rashed
,
A.
,
Kolsi
,
L.
,
Kadhim Hussein
,
A.
,
Hassen
,
W.
,
Aichouni
,
M.
, and
Borjini
,
M.
,
2017
, “
Numerical Study of Three-Dimensional Natural Convection and Entropy Generation in a Cubical Cavity With Partially Active Vertical Walls
,”
Case Stud. Therm. Eng.
,
10
, pp.
100
110
.10.1016/j.csite.2017.05.003
14.
Bhuiyana
,
A. H.
,
Shahidul Alam
,
M.
, and
Alim
,
M. A.
,
2017
, “
Natural Convection of Water-Based Nanofluids in a Square Cavity With Partially Heated of the Bottom Wall
,”
Procedia Eng.
,
194
, pp.
435
441
.10.1016/j.proeng.2017.08.168
15.
Jena
,
S. K.
,
Mahapatra
,
S. K.
, and
Sarkar
,
A.
,
2013
, “
Double Diffusive Buoyancy Opposed Natural Convection in a Porous Cavity Having Partially Active Vertical Walls
,”
Int. J. Heat Mass Transfer
,
62
, pp.
805
817
.10.1016/j.ijheatmasstransfer.2013.02.027
16.
Nikbakhti
,
R.
, and
Rahimi
,
A. B.
,
2012
, “
Double-Diffusive Natural Convection in a Rectangular Cavity With Partially Thermally Active Side Walls
,”
J. Taiwan Inst. Chem. Eng.
,
43
(
4
), pp.
535
541
.10.1016/j.jtice.2012.02.010
17.
Saravanan
,
S.
, and
Senthil Nayaki
,
V. P. M.
,
2016
, “
Natural Convection in a Cubical Porous Cavity With Partially Active Lateral Walls
,”
Int. Commun. Heat Mass Transfer
, 80, pp.
41
46
.10.1016/j.icheatmasstransfer.2016.11.005
18.
Sambou
,
V.
,
Lartigue
,
B.
,
Monchoux
,
F.
, and
Breton
,
J. L.
,
2009
, “
One-Dimensional Model of Natural Convection in Differentially Heated Partitioned Enclosures With Conducting External Walls and Vertical Partitions
,”
J. Therm. Sci. Eng.
,
1
, pp.
1
6
.
19.
Ho
,
C. J.
, and
Yih
,
Y. L.
,
1987
, “
Conjugate Natural Heat Transfer in an Air-Filled Rectangular Cavity
,”
Int. Commun. Heat Mass Transfer
,
14
(
1
), pp.
91
100
.10.1016/0735-1933(87)90011-X
20.
Acharya
,
S.
, and
Tsang
,
C. H.
,
1985
, “
Natural Convection Heat Transfer in a Fully Partitioned Inclined Enclosure
,”
Numer. Heat Transfer
,
8
(
4
), pp.
407
428
.10.1080/01495728508961863
21.
Ben-Nakhi
,
A.
, and
Chamkha
,
A. J.
,
2007
, “
Conjugate Natural Convection in a Square Enclosure With Inclined Thin fin of Arbitrary Length
,”
Int. J. Therm. Sci.
,
46
(
5
), pp.
467
478
.10.1016/j.ijthermalsci.2006.07.008
22.
Costa
,
V. A. F.
,
2012
, “
Natural Convection in Partially Divided Square Enclosures: Effects of Thermal Boundary Conditions and Thermal Conductivity of the Partitions
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7812
7822
.10.1016/j.ijheatmasstransfer.2012.08.004
23.
Shi
,
X.
, and
Khodadadi
,
J. M.
,
2002
, “
Laminar fluid flow and Heat Transfer in a Lid-Driven Cavity Due to a Thin fin
,”
ASME J. Heat Transfer-Trans. ASME
,
24
, pp.
1056
1063
.10.1115/1.1571847
24.
Liu
,
Y.
,
Lei
,
C.
, and
Patterson
,
J. C.
,
2014
, “
Natural Convection in a Differentially Heated Cavity With Two Horizontal Adiabatic fins on the Sidewalls
,”
Int. J. Heat Mass Transfer
,
72
, pp.
23
36
.10.1016/j.ijheatmasstransfer.2013.12.083
25.
Sheikhzadeh
,
G. A.
,
Arefmanesh
,
A.
,
Kheirkhah
,
M. H.
, and
Abdollahi
,
R.
,
2011
, “
Natural Convection of Cu–Water Nanofluid in a Cavity With Partially Active Side Walls
,”
Eur. J. Mech. B/Fluids
,
30
(
2
), pp.
166
176
.10.1016/j.euromechflu.2010.10.003
26.
Torabi
,
M.
,
Keyhani
,
A.
, and
Peterson
,
G. P.
,
2017
, “
A Comprehensive Investigation of Natural Convection Inside a Partially Differentially Heated Cavity With a Thin fin Using Two-Set Lattice Boltzmann Distribution Functions
,”
Int. J. Heat Mass Transfer
,
115
, pp.
264
277
.10.1016/j.ijheatmasstransfer.2017.07.042
27.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
101
(
4
), pp.
718
725
.10.1115/1.3451063
28.
Bejan
,
A.
,
1980
, “
Second Law Analysis in Heat Transfer
,”
Energy
,
5
(
8–9
), pp.
720
732
.10.1016/0360-5442(80)90091-2
29.
Bejan
,
A.
,
1977
, “
The Concept of Irreversibility in Heat Exchanger Design: Counter Flow Heat Exchangers for Gas-to-Gas Applications
,”
ASME J. Heat Transfer-Trans. ASME
,
99
(
3
), pp.
374
380
.10.1115/1.3450705
30.
Bejan
,
A.
,
1978
, “
Two Thermodynamic Optima in the Design of Sensible Heat Units for Energy Storage
,”
ASME J. Heat Transfer-Trans. ASME
,
100
(
4
), pp.
708
712
.10.1115/1.3450882
31.
Yilbas
,
B. S.
,
Shuja
,
S. Z.
,
Gbadebo
,
S. A.
,
Abu Al-Hamayel
,
H. I.
, and
Boran
,
K.
,
1998
, “
Natural Convection and Entropy Generation in a Square Cavity
,”
Int. J. Energy Res.
,
22
(
14
), pp.
1275
1290
.10.1002/(SICI)1099-114X(199811)22:14<1275::AID-ER453>3.0.CO;2-B
32.
Erbay
,
L. B.
,
Altac
,
Z.
, and
Sulus
,
B.
,
2003
, “
An Analysis of the Entropy Generation in a Square Enclosure
,”
Entropy
,
5
(
5
), pp.
496
505
.10.3390/e5050496
33.
Erbay
,
L. B.
,
Altac
,
Z.
, and
Sulus
,
B.
,
2004
, “
Entropy Generation in a Square Enclosure With Partial Heating From a Vertical Lateral Wall
,”
Heat Mass Transfer
,
40
, pp.
909
918
.10.1007/s00231-003-0497-x
34.
Dagtekin
,
I.
,
Oztop
,
H. F.
, and
Bahloul
,
A.
,
2007
, “
Entropy Generation for Natural Convection in Γ-Shaped Enclosures
,”
Int. Commun. Heat Mass Transfer
,
34
(
4
), pp.
502
510
.10.1016/j.icheatmasstransfer.2007.01.003
35.
Baytas
,
A. C.
,
Yang
,
W. J.
, and
Arbor
,
A.
,
1997
, “
Optimization in an Inclined Enclosure for Minimum Entropy Generation in Natural Convection
,”
J. Non-Equilib. Thermodyn.
,
22
, pp.
145
155
.
36.
Andreozzi
,
A.
,
Auletta
,
A.
, and
Manca
,
O.
,
2006
, “
Entropy Generation in Natural Convection in a Symmetrically and Uniformly Heated Vertical Channel
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3221
3228
.10.1016/j.ijheatmasstransfer.2006.01.032
37.
Mahmud
,
S.
, and
Sadrul Islam
,
A. K. M.
,
2003
, “
Laminar Free Convection and Entropy Generation Inside an Inclined Wavy Enclosure
,”
Int. J. Therm. Sci.
,
42
(
11
), pp.
1003
1012
.10.1016/S1290-0729(03)00076-0
38.
Shuja
,
S. Z.
,
Yilbas
,
B. S.
, and
Budair
,
M. O.
,
2000
, “
Natural Convection in a Square Cavity With a Heat Generating Body: Entropy Consideration
,”
Heat Mass Transfer
,
36
(
4
), pp.
343
350
.10.1007/s002310000075
39.
Yilbas
,
B. S.
,
2006
, “
Laser Short-Pulse of Gold–Silver Assembly: Entropy Generation Due to Heat and Electricity Flows in Electron Subsystem
,”
Numer. Heat Transfer: Part A
,
49
(
9
), pp.
873
891
.10.1080/10407780500483511
40.
Ko
,
T. H.
,
2006
, “
Numerical Investigation of Laminar Forced Convection and Entropy Generation in a Helical Coil With Constant Wall Heat Flux
,”
Numer. Heat Transfer Part A
,
49
(
3
), pp.
257
278
.10.1080/10407780500343707
41.
Naterer
,
G. F.
, and
Camberos
,
J. A.
,
2003
, “
Entropy and the Second Law Fluid Flow and Heat Transfer Simulation
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
360
371
.10.2514/2.6777
42.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson
, Harlow, UK.
You do not currently have access to this content.