Abstract

The development of fluoride-cooled high-temperature reactors has drastically increased the demand for an in-depth understanding of the heat transfer (HT) in packed beds cooled by liquid salts. The complex flow fields and space-dependent porosity found in a pebble bed require a detailed understanding to ensure the proper cooling of the reactor core during normal and accident conditions. As detailed experimental data are complicated to obtain for these configurations, high-fidelity simulation such as large eddy simulation and direct numerical simulation (DNS) can be employed to create a high-resolution heat transfer numerical database that can assist in addressing industrial-driven issues associated with the heat transfer behavior of fluoride-cooled high-temperature reactors. In this paper, we performed a series of large eddy simulation using computational fluid dynamics (CFD) code NekRS to investigate the heat transfer for a bed of 1741 pebbles. The characteristics of the flow, such as average, rms, and time series of velocity and temperature, have been analyzed. Porous media averages have also been performed. The simulation results show a good agreement between non-conjugate heat transfer and conjugate heat transfer. The generated data will be used to benchmark heat transfer modeling methods and local maxima/minima of heat transfer parameters. It will also be used for supporting convective heat transfer quantification for Kairos Power and benchmarking lower fidelity models.

References

1.
Locatelli
,
G.
,
Mancini
,
M.
, and
Todeschini
,
N.
,
2013
, “
Generation IV Nuclear Reactors: Current Status and Future Prospects
,”
Energy Policy
,
61
, pp.
1503
1520
.10.1016/j.enpol.2013.06.101
2.
Lohnert
,
G.
,
1990
, “
Technical Design Features and Essential Safety-Related Properties of the HTR-Module
,”
Nucl. Eng. Des.
,
121
(
2
), pp.
259
275
.10.1016/0029-5493(90)90111-A
3.
Bae
,
S. J.
,
Lee
,
J.
,
Ahn
,
Y.
, and
Lee
,
J. I.
,
2015
, “
Preliminary Studies of Compact Brayton Cycle Performance for Small Modular High Temperature Gas-Cooled Reactor System
,”
Ann. Nucl. Energy
,
75
, pp.
11
19
.10.1016/j.anucene.2014.07.041
4.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
Mclinden
,
M. O.
,
2007
, “
NIST Reference Fluid Thermodynamic and Transport Properties-REFPROP
,”
National Institute of Standards and Technology
,
Boulder, CO
.
5.
Fei
,
T.
,
Ogata
,
D.
,
Pham
,
K.
,
Solom
,
M.
,
Zhao
,
C.
,
Xu
,
C.
, and
Cheng
,
A.
,
2008
, “
A Modular Pebble-Bed Advanced High Temperature Reactor
,”
UC Berkeley
,
Report No. UCBTH-08-001.
6.
Zhang
,
L.
, and
Fan
,
Y.
,
2017
, “
Thermal-Hydraulic Analysis of a Pebble Bed Fluoride Salt-Cooled High-Temperature Reactor
,”
Nucl. Eng. Des.
,
318
, pp.
131
139
.
7.
Ren
,
Y.
, and
Li
,
Z.
,
2020
, “
Feasibility Study of Hydrogen Production Using Pebble Bed Fluoride Salt-Cooled High Temperature Reactor
,”
J. Nucl. Mater. Energy
,
23
, p.
100378
.
8.
Novak
,
A. J.
,
Chunert
,
S.
,
Carlsen
,
R. W.
,
Balestra
,
P.
,
Slaybaug
,
R. N.
, and
Martineau
,
R. C.
,
2021
, “
Multiscale Thermal-Hydraulic Modeling of the Pebble Bed Fluoride-Salt-Cooled High-Temperature Reactor
,”
Ann. Nucl. Energy
,
154
, p.
107968
.10.1016/j.anucene.2020.107968
9.
Gnielinski
,
V.
,
1978
, “
Equations for the Calculation of the Heat and Mass Transfer in Quiescent Heaps of Pebbles Through Which Flow Occurs With Medium and Large Peclet Numbers
,”
Verfahrenstechnik
,
12
(
6
), pp.
63
366
.
10.
Achenbach
,
E.
,
1995
, “
Heat and Flow Characteristics of Packed Beds
,”
Exp. Therm. Fluid Sci.
,
10
(
1
), pp.
17
27
.10.1016/0894-1777(94)00077-L
11.
Wakao
,
N.
,
Kaguei
,
S.
, and
Funazkri
,
T.
,
1979
, “
Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds
,”
Chem. Eng. Sci.
,
34
(
3
), pp.
325
336
.10.1016/0009-2509(79)85064-2
12.
Wakao
,
N.
, and
Funazkri
,
T.
,
1978
, “
Effect of Fluid Dispersion Coefficients on Particle-To-Fluid Mass Transfer Coefficients in Packed Beds: Correlation of Sherwood Numbers
,”
Chem. Eng. Sci.
,
33
(
10
), pp.
1375
1384
.10.1016/0009-2509(78)85120-3
13.
Whitaker
,
S.
,
1972
, “
Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles
,”
AIChE J.
,
18
(
2
), pp.
361
371
.10.1002/aic.690180219
14.
Satvat
,
N.
,
Sarikurt
,
F.
,
Johnson
,
K.
,
Kolaja
,
I.
,
Fratoni
,
M.
,
Haugh
,
B.
, and
Blandford
,
E.
,
2021
, “
Neutronics, Thermal-Hydraulics, and Multi-Physics Benchmark Models for a Generic Pebble-Bed Fluoride-Salt-Cooled High Temperature Reactor (FHR)
,”
Nucl. Eng. Des.
,
384
, p.
111461
.10.1016/j.nucengdes.2021.111461
15.
Ge
,
J.
,
Wang
,
C.
,
Xiao
,
Y.
,
Tian
,
W.
,
Qiu
,
S.
,
Su
,
G. H.
,
Zhang
,
D.
, and
Wu
,
Y.
,
2016
, “
Thermal-Hydraulic Analysis of a Fluoride-Salt-Cooled Pebble-Bed Reactor With CFD Methodology
,”
Prog. Nucl. Energy
,
91
, pp.
83
96
.10.1016/j.pnucene.2016.01.011
16.
Dixon
,
A.
,
2012
, “
Fixed Bed Catalytic Reactor Modelling-the Radial Heat Transfer Problem
,”
Can. J. Chem. Eng.
,
90
(
3
), pp.
507
527
.10.1002/cjce.21630
17.
Bai
,
H.
,
Theuerkauf
,
J.
,
Gillis
,
P. A.
, and
Witt
,
P. M.
,
2009
, “
A Coupled DEM and CFD Simulation of Flow Field and Pressure Drop in Fixed Bed Reactor With Randomly Packed Catalyst Particles
,”
Ind. Eng. Chem. Res.
,
48
(
8
), pp.
4060
4074
.10.1021/ie801548h
18.
Hassan
,
Y. A.
,
2008
, “
Large Eddy Simulation in Pebble Bed Gas Cooled Core Reactors
,”
Nucl. Eng. Des.
,
238
(
3
), pp.
530
537
.10.1016/j.nucengdes.2007.02.041
19.
Yildiz
,
M. A.
,
Botha
,
G.
,
Yuan
,
H.
,
Merzari
,
E.
,
Kurwitz
,
R. C.
, and
Hassan
,
Y. A.
,
2020
, “
Direct Numerical Simulation of the Flow Through a Randomly Packed Pebble Bed
,”
ASME J. Fluids Eng.
,
142
(
4
), p.
041405
.10.1115/1.4045439
20.
Nguyen
,
T.
,
Muyshondt
,
R.
,
Hassan
,
Y. A.
, and
Anand
,
N. K.
,
2019
, “
Experimental Investigation of Cross Flow Mixing in a Randomly Packed Bed and Streamwise Vortex Characteristics Using Particle Image Velocimetry and Proper Orthogonal Decomposition Analysis
,”
Phys. Fluids
,
31
(
2
), p.
025101
.10.1063/1.5079303
21.
Yuan
,
H.
, “
voro2hex
,” accessed 2022, https://github.com/yhaomin2007/voro2hex
22.
Reger
,
D.
,
Merzari
,
E.
,
Balestra
,
P.
,
Schunert
,
S.
,
Hassan
,
Y.
,
Yuan
,
H.
,
Lan
,
Y.
, et al.,
2023
, “
Pressure Drop Correlation Improvement for the Near-Wall Region of Pebble-Bed Reactors
,”
Nucl. Technol.
,
209
(
1
), pp.
90
104
.10.1080/00295450.2022.2108688
23.
Fischer
,
P.
,
Kerkemeier
,
S.
,
Min
,
M.
,
Lan
,
Y.-H.
,
Phillips
,
M.
,
Rathnayake
,
T.
,
Merzari
,
E.
, et al., “
NekRS, a GPU-Accelerated Spectral Element Navier–Stokes Solver
,”
Parallel Computing
, 114, p. 102982.10.1016/j.parco.2022.102982
24.
Merzari
,
E.
,
Fischer
,
P.
,
Min
,
M.
,
Kerkemeier
,
S.
,
Obabko
,
A.
,
Shaver
,
D.
,
Yuan
,
H.
, et al.,
2020
, “
Toward Exascale: Overview of Large Eddy Simulations and Direct Numerical Simulations of Nuclear Reactor Flows With the Spectral Element Method in Nek5000
,”
Nucl. Technol.
,
206
(
9
), pp.
1308
1324
.10.1080/00295450.2020.1748557
25.
Medina
,
D. S.
,
St-Cyr
,
A.
, and
Warburton
,
T.
,
2014
, “
OCCA: A Unified Approach to Multi-Threading Languages
,” arXiv:1403.0968.
26.
Nguyen
,
T.
,
Merzari
,
E.
,
Tai
,
C.-K.
, and
Bolotnov
,
I. A.
,
2023
, “
Direct Numerical Simulation of High Prandtl Number Fluid Flow in the Downcomer of an Advanced Reactor
,” ATH 2022, American Nuclear Society (
ANS
) Annual Meeting, American Nuclear Society, June 12–16,
Anaheim, CA
, pp. 162–176.10.1080/00295639.2023.2186200
27.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
(
3
), pp.
468
488
.10.1016/0021-9991(84)90128-1
28.
Fischer
,
P.
, and
Mullen
,
J.
,
2001
, “
Filter-Based Stabilization of Spectral Element Methods
,”
C. R. de L'Academie Des Sci. Ser. I Math.
,
332
(
3
), pp.
265
270
.10.1016/S0764-4442(00)01763-8
29.
Tomboulides
,
A.
,
Lee
,
J. C.
, and
Orszag
,
S.
,
1997
, “
Numerical Simulation of Low Mach Number Reactive Flows
,”
J. Sci. Comput.
,
12
(
2
), pp.
139
167
.10.1023/A:1025669715376
30.
Lan
,
Y.-H.
,
Fischer
,
P.
,
Merzari
,
E.
, and
Min
,
M.
,
2021
, “
All-Hex Meshing Strategies for Densely Packed Spheres
,”
arXiv:2106.00196v2 [cs.CE]
https://arxiv.org/abs/2106.00196
31.
Hackett
,
M.
,
2020
, “
Update on SAM Development and Coupling Requirements
,” accessed July 24, 2023, https://gain.inl.gov/HALEU_Webinar_Presentations/31-Hacket,Kairos_rev1-29Apr2020.pdf
32.
Greenshields
,
C.
,
2022
, “
OpenFOAM v10 User Guide
,” accessed July 12, 2022, https://doc.cfd.direct/openfoam/user-guide-v10/index
33.
Reger
,
D.
,
Merzari
,
E.
,
Yuan
,
H.
,
Hassan
,
Y.
,
King
,
S.
,
Ngo
,
K.
,
Schunert
,
S.
, and
Balestra
,
P.
,
2022
, “
Large Eddy Simulation of a 67-Pebble Bed Experiment
,” ATH 2022, American Nuclear Society (
ANS
) Annual Meeting, June 12–16, American Nuclear Society,
Anaheim, CA
.https://www.ans.org/meetings/am2022/session/view-1249/
34.
Yuan
,
H.
,
Nguyen
,
T.
,
Reger
,
D.
,
Merzari
,
E.
,
Shaver
,
D.
,
Yau
,
K.-Y.
,
Busco
,
G.
, et al.,
2023
, “
20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20)
,” Spectral Element CFD Simulation of Mixed Convection in a Hermes-Size Test Reactor Core, Aug. 20–25, American Nuclear Society,
Washington, DC
.
35.
Lee
,
J.
,
Balestra
,
P.
,
Hassan
,
Y. A.
,
Muyshondt
,
R.
,
Nguyen
,
D. T.
, and
Skifton
,
R.
,
2022
, “
Validation of Pronghorn Pressure Drop Correlations Against Pebble Bed Experiments
,”
Nucl. Technol.
,
208
(
12
), pp.
1769
1805
.10.1080/00295450.2022.2081482
36.
Ausschusses
,
G. D. K.
,
1981
, “
KTA 3102.3, Reactor Core Design of High-Temperature Gas-Cooled Reactors Part 3: Loss of Pressure Through Friction in Pebble Bed Cores
,” accessed July 24, 2023, https://www.kta-gs.de/e/standards/3100/3102_3_engl_1981_03.pdf
37.
Novak
,
A. J.
,
Peterson
,
J. W.
,
Zou
,
L.
,
Andrš
,
D.
,
Slaybaugh
,
R. N.
, and
Martineau
,
R. C.
,
2019
, “
Validation of Pronghorn Friction-Dominated Porous Media Thermal Hydraulics Model With the SANA Experiments
,”
Nucl. Eng. Des.
,
350
, pp.
182
194
.10.1016/j.nucengdes.2019.04.037
38.
Baggemann
,
J.
,
Shi
,
D.
,
Kasselmann
,
S.
,
Kelm
,
S.
,
Allelein
,
H.-J.
, and
Hurtado
,
A.
,
2016
, “
Use of SANA Experimental Data for Validation and Verification of MGT-3D and a CFD Porous Media Model for VHTR Application
,”
Nucl. Eng. Des.
,
305
, pp.
678
687
.10.1016/j.nucengdes.2016.05.030
39.
Lau
,
K. M.
, and
Weng
,
H.
,
1995
, “
Climate Signal Detection Using Wavelet Transform: How to Make a Time Series Sing
,”
Bull. Am. Meteorol. Soc
,
76
(
12
), pp.
2391
2402
.10.1175/1520-0477(1995)076<2391:CSDUWT>2.0.CO;2
40.
Misiti
,
M.
,
Misiti
,
Y.
,
Oppenheim
,
G.
, and
Poggi
,
J.-M.
,
2022
, “
Wavelet Toolbox for Use With MATLAB R2022a User's Guide
,” accessed July 24, 2023, https://www.mathworks.com/help/wavelet/
41.
Su
,
B.
,
Yin
,
Y.
,
Li
,
S.
,
Guo
,
Z.
,
Wang
,
Q.
, and
Lin
,
M.
,
2018
, “
Wavelet Analysis on the Turbulent Flow Structure of a T-Junction
,”
Int. J. Heat Fluid Flow
,
73
, pp.
124
142
.10.1016/j.ijheatfluidflow.2018.07.008
42.
De Klerk
,
A.
,
2003
, “
Voidage Variation in Packed Beds at Small Column to Particle Diameter Ratio
,”
AIChE J.
,
49
(
8
), pp.
2022
2029
.10.1002/aic.690490812
43.
Dixon
,
A. G.
,
1988
, “
Correlations for Wall and Particle Shape Effects on Fixed Bed Bulk Voidage
,”
Can. J. Chem. Eng.
,
66
(
5
), pp.
705
708
.10.1002/cjce.5450660501
44.
Jeschar
,
R.
,
1964
, “
Druckverlust in Mehrkornschüttungen Aus Kugeln
,”
Arch. Das Eisenhüttenwes
,
35
(
2
), pp.
91
108
.10.1002/srin.196402300
45.
Hunt
,
M. L.
, and
Tien
,
C. L.
,
1990
, “
Non-Darcian Flow, Heat and Mass Transfer in Catalytic Packed-Bed Reactors
,”
Chem. Eng. Sci.
,
45
(
1
), pp.
55
63
.10.1016/0009-2509(90)87080-C
You do not currently have access to this content.