Abstract

Thermal management is critical for safety, performance, and durability of lithium-ion batteries that are ubiquitous in consumer electronics, electric vehicles (EVs), aerospace, and grid-scale energy storage. Toward mass adoption of EVs globally, lithium-ion batteries are increasingly used under extreme conditions including low temperatures, high temperatures, and fast charging. Furthermore, EV fires caused by battery thermal runaway have become a major hurdle to the wide adoption of EVs. These extreme conditions pose great challenges for thermal management and require unconventional strategies. The interactions between thermal, electrochemical, materials, and structural characteristics of batteries further complicate the challenges, but they also enable opportunities for developing innovative strategies of thermal management. In this review, the challenges for thermal management under extreme conditions are analyzed. Then, the progress is highlighted in two directions. One direction is improving battery thermal management systems based on the principles of heat transfer, which are generally external to Li-ion cells. The other direction is designing novel battery structures, which are generally internal of Li-ion cells such as smart batteries with embedded sensors and actuators. The latter approach could greatly simplify or even eliminate the need for battery thermal management under extreme conditions. New research integrating these two approaches is recommended.

References

1.
Paoli
,
L.
, and
Gül
,
T.
,
2022
, “
Electric Cars Fend Off Supply Challenges to More Than Double Global Sales
,” IEA, Paris, France, accessed Feb. 7, 2023, https://www.iea.org/commentaries/electric-cars-fend-off-supply-challenges-to-more-than-double-global-sales
2.
BloombergNEF
,
2022
, “
Electric Vehicle Outlook 2022
,” Bloomberg NEF, London, UK, accessed Feb. 7, 2023, https://about.bnef.com/electric-vehicle-outlook/
3.
Abnett
,
K.
,
2022
, “
EU Approves Effective Ban on New Fossil Fuel Cars From 2035
,” Reuters, London, UK, accessed Feb. 7, 2023, https://www.reuters.com/markets/europe/eu-approves-effective-ban-new-fossil-fuel-cars-2035-2022-10-27/
4.
CARB
,
2022
, “
California Moves to Accelerate to 100% New Zero-Emission Vehicle Sales by 2035
,” CARB, Sacramento, CA, accessed Feb. 7, 2023, https://ww2.arb.ca.gov/news/california-moves-accelerate-100-new-zero-emission-vehicle-sales-2035
5.
USABC
,
2020
, “
Battery Test Manual for Electric Vehicles REVISION 3.1
,” USABC, Southfield, MI, accessed Feb. 7, 2023, https://uscar.org/usabc/
6.
Leng
,
F.
,
Tan
,
C. M.
, and
Pecht
,
M.
,
2015
, “
Effect of Temperature on the Aging Rate of Li Ion Battery Operating Above Room Temperature
,”
Sci. Rep.
,
5
(
1
), p.
12967
.10.1038/srep12967
7.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
.10.1016/j.ensm.2017.05.013
8.
Aalund
,
R.
,
Diao
,
W.
,
Kong
,
L.
, and
Pecht
,
M.
,
2021
, “
Understanding the Non-Collision Related Battery Safety Risks in Electric Vehicles a Case Study in Electric Vehicle Recalls and the LG Chem Battery
,”
IEEE Access
,
9
, pp.
89527
89532
.10.1109/ACCESS.2021.3090304
9.
NTSB
,
2020
, “
Safety Risks to Emergency Responders From Lithium-Ion Battery Fires in Electric Vehicles
,”
NTSB
, Washington, DC, Safety Report No. NTSB/SR-20/01.
10.
Sun
,
P.
,
Bisschop
,
R.
,
Niu
,
H.
, and
Huang
,
X.
,
2020
, “
A Review of Battery Fires in Electric Vehicles
,”
Fire Technol.
,
56
, pp.
1361
1410
.10.1007/s10694-019-00944-3
11.
Wöhrl
,
K.
,
Geisbauer
,
C.
,
Nebl
,
C.
,
Lott
,
S.
, and
Schweiger
,
H.-G.
,
2021
, “
Crashed Electric Vehicle Handling and Recommendations—State of the Art in Germany
,”
Energies
,
14
(
4
), p.
1040
.10.3390/en14041040
12.
Yang
,
X.-G.
,
Liu
,
T.
, and
Wang
,
C.-Y.
,
2021
, “
Thermally Modulated Lithium Iron Phosphate Batteries for Mass-Market Electric Vehicles
,”
Nat. Energy
,
6
, pp.
176
185
.10.1038/s41560-020-00757-7
13.
Choi
,
J. W.
, and
Aurbach
,
D.
,
2016
, “
Promise and Reality of Post-Lithium-Ion Batteries With High Energy Densities
,”
Nat. Rev. Mater.
,
1
(
4
), p.
16013
.10.1038/natrevmats.2016.13
14.
Zeng
,
X.
,
Li
,
M.
,
Abd El-Hady
,
D.
,
Alshitari
,
W.
,
Al-Bogami
,
A. S.
,
Lu
,
J.
, and
Amine
,
K.
,
2019
, “
Commercialization of Lithium Battery Technologies for Electric Vehicles
,”
Adv. Energy Mater.
,
9
(
27
), p.
1900161
.10.1002/aenm.201900161
15.
EUCAR
,
2019
, “
Battery Requirements for Future Automotive Applications
,”
EUCAR
, Brussels, Belgium, accessed Feb.7, 2023, https://www.eucar.be/battery-requirements-for-future-automotive-applications/
16.
Zhang
,
G.
,
Cao
,
L.
,
Ge
,
S.
,
Wang
,
C.-Y.
,
Shaffer
,
C. E.
, and
Rahn
,
C. D.
,
2014
, “
In Situ Measurement of Radial Temperature Distributions in Cylindrical Li-Ion Cells
,”
J. Electrochem. Soc.
,
161
(
10
), pp.
A1499
A1507
.10.1149/2.0051410jes
17.
Waldmann
,
T.
,
Wilka
,
M.
,
Kasper
,
M.
,
Fleischhammer
,
M.
, and
Wohlfahrt-Mehrens
,
M.
,
2014
, “
Temperature Dependent Ageing Mechanisms in Lithium-Ion Batteries—A Post-Mortem Study
,”
J. Power Sources
,
262
, pp.
129
135
.10.1016/j.jpowsour.2014.03.112
18.
Keil
,
P.
,
Schuster
,
S. F.
,
Wilhelm
,
J.
,
Travi
,
J.
,
Hauser
,
A.
,
Karl
,
R. C.
, and
Jossen
,
A.
,
2016
, “
Calendar Aging of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
163
(
9
), pp.
A1872
A1880
.10.1149/2.0411609jes
19.
Ping
,
P.
,
Wang
,
Q.
,
Huang
,
P.
,
Sun
,
J.
, and
Chen
,
C.
,
2014
, “
Thermal Behaviour Analysis of Lithium-Ion Battery at Elevated Temperature Using Deconvolution Method
,”
Appl. Energy
,
129
, pp.
261
273
.10.1016/j.apenergy.2014.04.092
20.
Feng
,
X.
,
Zheng
,
S.
,
Ren
,
D.
,
He
,
X.
,
Wang
,
L.
,
Cui
,
H.
,
Liu
,
X.
,
Jin
,
C.
,
Zhang
,
F.
,
Xu
,
C.
,
Hsu
,
H.
,
Gao
,
S.
,
Chen
,
T.
,
Li
,
Y.
,
Wang
,
T.
,
Wang
,
H.
,
Li
,
M.
, and
Ouyang
,
M.
,
2019
, “
Investigating the Thermal Runaway Mechanisms of Lithium-Ion Batteries Based on Thermal Analysis Database
,”
Appl. Energy
,
246
, pp.
53
64
.10.1016/j.apenergy.2019.04.009
21.
Liu
,
X.
,
Ren
,
D.
,
Hsu
,
H.
,
Feng
,
X.
,
Xu
,
G.-L.
,
Zhuang
,
M.
,
Gao
,
H.
,
Lu
,
L.
,
Han
,
X.
,
Chu
,
Z.
,
Li
,
J.
,
He
,
X.
,
Amine
,
K.
, and
Ouyang
,
M.
,
2018
, “
Thermal Runaway of Lithium-Ion Batteries Without Internal Short Circuit
,”
Joule
,
2
(
10
), pp.
2047
2064
.10.1016/j.joule.2018.06.015
22.
Gu
,
W. B.
, and
Wang
,
C. Y.
,
2000
, “
Thermal-Electrochemical Modeling of Battery Systems
,”
J. Electrochem. Soc.
,
147
(
8
), p.
2910
.10.1149/1.1393625
23.
Huang
,
S.
,
Wu
,
X.
,
Cavalheiro
,
G. M.
,
Du
,
X.
,
Liu
,
B.
,
Du
,
Z.
, and
Zhang
,
G.
,
2019
, “
In Situ Measurement of Lithium-Ion Cell Internal Temperatures During Extreme Fast Charging
,”
J. Electrochem. Soc.
,
166
(
14
), pp.
A3254
A3259
.10.1149/2.0441914jes
24.
Lu
,
Z.
,
Yu
,
X. L.
,
Wei
,
L. C.
,
Cao
,
F.
,
Zhang
,
L. Y.
,
Meng
,
X. Z.
, and
Jin
,
L. W.
,
2019
, “
A Comprehensive Experimental Study on Temperature-Dependent Performance of Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
158
, p.
113800
.10.1016/j.applthermaleng.2019.113800
25.
Teufl
,
T.
,
Pritzl
,
D.
,
Solchenbach
,
S.
,
Gasteiger
,
H. A.
, and
Mendez
,
M. A.
,
2019
, “
Editors' Choice—State of Charge Dependent Resistance Build-Up in Li- and Mn-Rich Layered Oxides During Lithium Extraction and Insertion
,”
J. Electrochem. Soc.
,
166
(
6
), pp.
A1275
A1284
.10.1149/2.1131906jes
26.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2004
, “
Electrochemical Impedance Study on the Low Temperature of Li-Ion Batteries
,”
Electrochim. Acta
,
49
(
7
), pp.
1057
1061
.10.1016/j.electacta.2003.10.016
27.
Neupane
,
S.
,
Alipanah
,
M.
,
Barnes
,
D.
, and
Li
,
X.
,
2018
, “
Heat Generation Characteristics of LiFePO4 Pouch Cells With Passive Thermal Management
,”
Energies
,
11
(
5
), p.
1243
.10.3390/en11051243
28.
Feng, X., Ren, D., He, X., and Ouyang, M.,
2020
, “Mitigating Thermal Runaway of Lithium-Ion Batteries”
Joule
,
4
(
4
), pp.
743-770
.10.1016/j.joule.2020.02.010
29.
Ribière
,
P.
,
Grugeon
,
S.
,
Morcrette
,
M.
,
Boyanov
,
S.
,
Laruelle
,
S.
, and
Marlair
,
G.
,
2012
, “
Investigation on the Fire-Induced Hazards of Li-Ion Battery Cells by Fire Calorimetry
,”
Energy Environ. Sci.
,
5
(
1
), pp.
5271
5280
.10.1039/C1EE02218K
30.
Chevrolet
,
2021
, “
Bolt EV and Bolt EUV Recall Information
,”
GM
, Detroit, MI, accessed Feb. 7, 2023, https://www.chevrolet.com/electric/bolt-recall
31.
Hyundai
,
2021
, “
Important Information for Hyundai Owners Regarding 2019–2020 Kona EV and 2020 Ioniq EV Batteries
,”
Hyundai
, Fountain Valley, CA, accessed Feb. 7, 2023, https://owners.hyundaiusa.com/us/en/resources/general-information/recall-200-information-and-implementation-plan.html
32.
NTSB
,
2014
, “
Auxiliary Power Unit Battery Fire Japan Airlines Boeing 787-8, JA829J
, Boston, Massachusetts, January 7, 2013,” NTSB Aircraft Incident Report,
NTSB
, Washington, DC, Report No. NTSB/AIR-14/01 PB2014-108867.
33.
Loveridge
,
M.
,
Remy
,
G.
,
Kourra
,
N.
,
Genieser
,
R.
,
Barai
,
A.
,
Lain
,
M.
,
Guo
,
Y.
,
Amor-Segan
,
M.
,
Williams
,
M.
,
Amietszajew
,
T.
,
Ellis
,
M.
,
Bhagat
,
R.
, and
Greenwood
,
D.
,
2018
, “
Looking Deeper Into the Galaxy (Note 7)
,”
Batteries
,
4
(
1
), p.
3
.10.3390/batteries4010003
34.
DNV GL
,
2020
, “
McMicken Battery Energy Storage System Event Technical Analysis and Recommendations, Document No.: 10209302-HOU-R-01
,”
DNV GL
, Chalfont, PA.
35.
Zhang
,
G.
,
Wei
,
X.
,
Tang
,
X.
,
Zhu
,
J.
,
Chen
,
S.
, and
Dai
,
H.
,
2021
, “
Internal Short Circuit Mechanisms, Experimental Approaches and Detection Methods of Lithium-Ion Batteries for Electric Vehicles: A Review
,”
Renewable Sustainable Energy Rev.
,
141
, p.
110790
.10.1016/j.rser.2021.110790
36.
Huang
,
S.
,
Du
,
X.
,
Richter
,
M.
,
Ford
,
J.
,
Cavalheiro
,
G. M.
,
Du
,
Z.
,
White
,
R. T.
, and
Zhang
,
G.
,
2020
, “
Understanding Li-Ion Cell Internal Short Circuit and Thermal Runaway Through Small, Slow and In Situ Sensing Nail Penetration
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090526
.10.1149/1945-7111/ab8878
37.
Huang
,
S.
,
Du
,
Z.
,
Zhou
,
Q.
,
Snyder
,
K.
,
Liu
,
S.
, and
Zhang
,
G.
,
2021
, “
In Situ Measurement of Temperature Distributions in a Li-Ion Cell During Internal Short Circuit and Thermal Runaway
,”
J. Electrochem. Soc.
,
168
(
9
), p.
090510
.10.1149/1945-7111/ac1d7b
38.
Lopez
,
C. F.
,
Jeevarajan
,
J. A.
, and
Mukherjee
,
P. P.
,
2015
, “
Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
,”
J. Electrochem. Soc.
,
162
(
9
), pp.
A1905
A1915
.10.1149/2.0921509jes
39.
Gao
,
S.
,
Lu
,
L.
,
Ouyang
,
M.
,
Duan
,
Y.
,
Zhu
,
X.
,
Xu
,
C.
,
Ng
,
B.
,
Kamyab
,
N.
,
White
,
R. E.
, and
Coman
,
P. T.
,
2019
, “
Experimental Study on Module-to-Module Thermal Runaway-Propagation in a Battery Pack
,”
J. Electrochem. Soc.
,
166
(
10
), pp.
A2065
A2073
.10.1149/2.1011910jes
40.
Longchamps
,
R. S.
,
Yang
,
X.-G.
, and
Wang
,
C.-Y.
,
2022
, “
Fundamental Insights Into Battery Thermal Management and Safety
,”
ACS Energy Lett.
,
7
(
3
), pp.
1103
1111
.10.1021/acsenergylett.2c00077
41.
Steinhardt
,
M.
,
Barreras
,
J. V.
,
Ruan
,
H.
,
Wu
,
B.
,
Offer
,
G. J.
, and
Jossen
,
A.
,
2022
, “
Meta-Analysis of Experimental Results for Heat Capacity and Thermal Conductivity in Lithium-Ion Batteries: A Critical Review
,”
J. Power Sources
,
522
, p.
230829
.10.1016/j.jpowsour.2021.230829
42.
Wang
,
Q.
,
Mao
,
B.
,
Stoliarov
,
S. I.
, and
Sun
,
J.
,
2019
, “
A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies
,”
Prog. Energy Combust. Sci.
,
73
, pp.
95
131
.10.1016/j.pecs.2019.03.002
43.
Finegan
,
D. P.
,
Scheel
,
M.
,
Robinson
,
J. B.
,
Tjaden
,
B.
,
Hunt
,
I.
,
Mason
,
T. J.
,
Millichamp
,
J.
,
Di Michiel
,
M.
,
Offer
,
G. J.
,
Hinds
,
G.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2015
, “
In-Operando High-Speed Tomography of Lithium-Ion Batteries During Thermal Runaway
,”
Nat. Commun.
,
6
(
1
), p.
6924
.10.1038/ncomms7924
44.
Zhao
,
W.
,
Luo
,
G.
, and
Wang
,
C.-Y.
,
2015
, “
Modeling Internal Shorting Process in Large-Format Li-Ion Cells
,”
J. Electrochem. Soc.
,
162
(
7
), pp.
A1352
A1364
.10.1149/2.1031507jes
45.
Zhao
,
W.
,
Luo
,
G.
, and
Wang
,
C.-Y.
,
2015
, “
Modeling Nail Penetration Process in Large-Format Li-Ion Cells
,”
J. Electrochem. Soc.
,
162
(
1
), pp.
A207
A217
.10.1149/2.1071501jes
46.
Aiello
,
L.
,
Kovachev
,
G.
,
Brunnsteiner
,
B.
,
Schwab
,
M.
,
Gstrein
,
G.
,
Sinz
,
W.
, and
Ellersdorfer
,
C.
,
2020
, “
In Situ Measurement of Orthotropic Thermal Conductivity on Commercial Pouch Lithium-Ion Batteries With Thermoelectric Device
,”
Batteries
,
6
(
1
), p.
10
.10.3390/batteries6010010
47.
Han
,
T.
,
Khalighi
,
B.
,
Yen
,
E. C.
, and
Kaushik
,
S.
,
2019
, “
Li-Ion Battery Pack Thermal Management: Liquid Versus Air Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
2
), p.
021009
.10.1115/1.4041595
48.
Li
,
Z.
,
Zhang
,
J.
,
Wu
,
B.
,
Huang
,
J.
,
Nie
,
Z.
,
Sun
,
Y.
,
An
,
F.
, and
Wu
,
N.
,
2013
, “
Examining Temporal and Spatial Variations of Internal Temperature in Large-Format Laminated Battery With Embedded Thermocouples
,”
J. Power Sources
,
241
, pp.
536
553
.10.1016/j.jpowsour.2013.04.117
49.
Cavalheiro
,
G. M.
,
Iriyama
,
T.
,
Nelson
,
G. J.
,
Huang
,
S.
, and
Zhang
,
G.
,
2020
, “
Effects of Nonuniform Temperature Distribution on Degradation of Lithium-Ion Batteries
,”
J. Electrochem. Energy Convers. Storage
,
17
(
2
), p. 021101.10.1115/1.4045205
50.
Malabet
,
H. J.
G.,
Cavalheiro
,
G. M.
,
Iriyama
,
T.
,
Gabhart
,
A.
,
Nelson
,
G. J.
, and
Zhang
,
G.
,
2021
, “
Electrochemical and Post-Mortem Degradation Analysis of Parallel-Connected Lithium-Ion Cells With Non-Uniform Temperature Distribution
,”
J. Electrochem. Soc.
,
168
(
10
), p.
100507
.10.1149/1945-7111/ac2a7c
51.
USABC
,
2020
, “
USABC Li-Ion Battery Thermal Management System Requirements
,”
USABC
, Southfield, MI, accessed Feb. 7, 2023, https://uscar.org/usabc/
52.
EVDB
,
2022
, “
Electric Vehicle Database
,”
EVDB
, Amsterdam, The Netherlands, accessed Feb. 7, 2023, https://ev-database.org
53.
NISSAN
,
2022
, “
2022 Leaf® Owner's Manual and Maintenance Information
,”
NISSAN
, Franklin, TN.
54.
NISSAN
,
2022
, “
2022 Leaf® Warranty Information Booklet
,”
NISSAN
, Franklin, TN.
55.
Tesla,
2022
, “
Model 3 Owner's Manual
,”
Tesla
, Austin, TX, accessed Feb. 7, 2023, https://www.tesla.com/ownersmanual/model3/en_us/
56.
Wassiliadis
,
N.
,
Steinsträter
,
M.
,
Schreiber
,
M.
,
Rosner
,
P.
,
Nicoletti
,
L.
,
Schmid
,
F.
,
Ank
,
M.
, et al.,
2022
, “
Quantifying the State of the Art of Electric Powertrains in Battery Electric Vehicles: Range, Efficiency, and Lifetime From Component to System Level of the Volkswagen ID.3
,”
eTransportation
,
12
, p.
100167
.10.1016/j.etran.2022.100167
57.
Volkswagen
,
2020
, “
ID.3 Battery and Charging Options
,”
Volkswagen
, Wolfsburg, Germany, accessed Feb. 7, 2023, https://www.volkswagen-newsroom.com/en/the-new-id3-6240/battery-and-charging-options-6247
58.
Figenbaum
,
E.
,
2020
, “
Battery Electric Vehicle Fast Charging–Evidence From the Norwegian Market
,”
World Electr. Veh. J.
,
11
(
2
), p.
38
.10.3390/wevj11020038
59.
Trentadue
,
G.
,
Lucas
,
A.
,
Otura
,
M.
,
Pliakostathis
,
K.
,
Zanni
,
M.
, and
Scholz
,
H.
,
2018
, “
Evaluation of Fast Charging Efficiency Under Extreme Temperatures
,”
Energies
,
11
(
8
), p.
1937
.10.3390/en11081937
60.
Hao
,
X.
,
Wang
,
H.
,
Lin
,
Z.
, and
Ouyang
,
M.
,
2020
, “
Seasonal Effects on Electric Vehicle Energy Consumption and Driving Range: A Case Study on Personal, Taxi, and Ridesharing Vehicles
,”
J. Cleaner Prod.
,
249
, p.
119403
.10.1016/j.jclepro.2019.119403
61.
Argue
,
C.
,
2020
, “
To What Degree Does Temperature Impact EV Range?
,”
GEOTAB
, Oakville, Canada, accessed Feb. 7, 2023, https://www.geotab.com/blog/ev-range/
62.
AAA
,
2019
, “
AAA Electric Vehicle Range Testing
,”
AAA
, Heathrow, FL, accessed Feb. 7, 2023, https://www.aaa.com/AAA/common/AAR/files/AAA-Electric-Vehicle-Range-Testing-Report.pdf
63.
Steinstraeter
,
M.
,
Heinrich
,
T.
, and
Lienkamp
,
M.
,
2021
, “
Effect of Low Temperature on Electric Vehicle Range
,”
World Electr. Veh. J.
,
12
(
3
), p.
115
.10.3390/wevj12030115
64.
Roe
,
C.
,
Feng
,
X.
,
White
,
G.
,
Li
,
R.
,
Wang
,
H.
,
Rui
,
X.
,
Li
,
C.
, et al.,
2022
, “
Immersion Cooling for Lithium-Ion Batteries—A Review
,”
J. Power Sources
,
525
, p.
231094
.10.1016/j.jpowsour.2022.231094
65.
Smith
,
B.
,
2012
, “
Chevrolet Volt Battery Incident Overview Report
,”
U.S. Department of Transportation, National Highway Traffic Safety Administration
, Washington, DC, Report No. DOT HS 811 573.
66.
Blum
,
A.
,
Bensen
,
T.
,
Rogers
,
P.
,
Grant
,
C.
, and
Hough
,
G.
,
2022
, “
Victorian Big Battery Fire: July 30, 2021 Report of Technical Findings
,” Victorian Big Battery, Canberra, Australia, accessed Feb. 9, 2023, https://victorianbigbattery.com.au/wp-content/uploads/2022/12/VBB-Fire-Independent-Report-of-Technical-Findings.pdf
67.
He
,
F.
, and
Ma
,
L.
,
2015
, “
Thermal Management of Batteries Employing Active Temperature Control and Reciprocating Cooling Flow
,”
Int. J. Heat Mass Transfer
,
83
, pp.
164
172
.10.1016/j.ijheatmasstransfer.2014.11.079
68.
Singh
,
G.
, and
Wu
,
H.
,
2022
, “
Effect of Different Inlet/Outlet Port Configurations on the Thermal Management of Prismatic Li-Ion Batteries
,”
ASME J. Heat Mass Trans.-Trans. ASME
,
144
(
11
), p.
112901
.10.1115/1.4055340
69.
Luo
,
J.
,
Zou
,
D.
,
Wang
,
Y.
,
Wang
,
S.
, and
Huang
,
L.
,
2022
, “
Battery Thermal Management Systems (BTMs) Based on Phase Change Material (PCM): A Comprehensive Review
,”
Chem. Eng. J.
,
430
, p.
132741
.10.1016/j.cej.2021.132741
70.
Chen
,
J.
,
Kang
,
S.
,
J
iaqiang,
E.
,
Huang
,
Z.
,
Wei
,
K.
,
Zhang
,
B.
,
Zhu
,
H.
,
Deng
,
Y.
,
Zhang
,
F.
, and
Liao
,
G.
,
2019
, “
Effects of Different Phase Change Material Thermal Management Strategies on the Cooling Performance of the Power Lithium Ion Batteries: A Review
,”
J. Power Sources
,
442
, p.
227228
.10.1016/j.jpowsour.2019.227228
71.
Türkakar
,
G.
,
2021
, “
Thermal Analysis and Parametric Investigation of Phase Change Material-Air Cooled Lithium Ion Battery Pack
,”
ASME J. Heat Mass Trans.-Trans. ASME
,
143
(
12
), p.
122901
.10.1115/1.4052154
72.
Wang
,
Z. C.
,
Zhang
,
Z. Q.
,
Jia
,
L.
, and
Yang
,
L. X.
,
2015
, “
Paraffin and Paraffin/Aluminum Foam Composite Phase Change Material Heat Storage Experimental Study Based on Thermal Management of Li-Ion Battery
,”
Appl. Therm. Eng.
,
78
, pp.
428
436
.10.1016/j.applthermaleng.2015.01.009
73.
Jeffs
,
J.
,
McGordon
,
A.
,
Picarelli
,
A.
,
Robinson
,
S.
,
Tripathy
,
Y.
, and
Widanage
,
W.
,
2018
, “
Complex Heat Pump Operational Mode Identification and Comparison for Use in Electric Vehicles
,”
Energies
,
11
(
8
), p.
2000
.10.3390/en11082000
74.
Yu
,
B.
,
Yang
,
J.
,
Wang
,
D.
,
Shi
,
J.
, and
Chen
,
J.
,
2019
, “
Energy Consumption and Increased EV Range Evaluation Through Heat Pump Scenarios and Low GWP Refrigerants in the New Test Procedure WLTP
,”
Int. J. Refrig.
,
100
, pp.
284
294
.10.1016/j.ijrefrig.2019.01.033
75.
Kwon
,
C.
,
Kim
,
M. S.
,
Choi
,
Y.
, and
Kim
,
M. S.
,
2017
, “
Performance Evaluation of a Vapor Injection Heat Pump System for Electric Vehicles
,”
Int. J. Refrig.
,
74
, pp.
138
150
.10.1016/j.ijrefrig.2016.10.004
76.
Yang
,
X.-G.
, and
Wang
,
C.-Y.
,
2018
, “
Understanding the Trilemma of Fast Charging, Energy Density and Cycle Life of Lithium-Ion Batteries
,”
J. Power Sources
,
402
, pp.
489
498
.10.1016/j.jpowsour.2018.09.069
77.
Ferrier
,
D. W. E.
,
2022
, “
An Analysis of Charging Practices and Their Impact on Battery Degradation in North American Electric Vehicles Built Between 2010–2020
,” Ph.D. dissertation,
Indiana State University
, Terre Haute, IN.
78.
Wang
,
H.
,
Zhu
,
Y.
,
Kim
,
S. C.
,
Pei
,
A.
,
Li
,
Y.
,
Boyle
,
D. T.
,
Wang
,
H.
, et al.,
2020
, “
Underpotential Lithium Plating on Graphite Anodes Caused by Temperature Heterogeneity
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
47
), pp.
29453
29461
.10.1073/pnas.2009221117
79.
Carter
,
R.
,
Kingston
,
T. A.
,
Atkinson
,
R. W.
,
Parmananda
,
M.
,
Dubarry
,
M.
,
Fear
,
C.
,
Mukherjee
,
P. P.
, and
Love
,
C. T.
,
2021
, “
Directionality of Thermal Gradients in Lithium-Ion Batteries Dictates Diverging Degradation Modes
,”
Cell Rep. Phys. Sci.
,
2
(
3
), p.
100351
.10.1016/j.xcrp.2021.100351
80.
Huang
,
Z.
,
Liu
,
P.
,
Duan
,
Q.
,
Zhao
,
C.
, and
Wang
,
Q.
,
2021
, “
Experimental Investigation on the Cooling and Suppression Effects of Liquid Nitrogen on the Thermal Runaway of Lithium Ion Battery
,”
J. Power Sources
,
495
, p.
229795
.10.1016/j.jpowsour.2021.229795
81.
Li
,
W.
,
Jishnu
,
A. K.
,
Garg
,
A.
,
Xiao
,
M.
,
Peng
,
X.
, and
Gao
,
L.
,
2020
, “
Heat Transfer Efficiency Enhancement of Lithium-Ion Battery Packs by Using Novel Design of Herringbone Fins
,”
J. Electrochem. Energy Convers. Storage
,
17
(
2
), pp.
1
19
.10.1115/1.4046160
82.
Ren
,
R.
,
Zhao
,
Y.
,
Diao
,
Y.
,
Liang
,
L.
, and
Jing
,
H.
,
2021
, “
Active Air Cooling Thermal Management System Based on U-Shaped Micro Heat Pipe Array for Lithium-Ion Battery
,”
J. Power Sources
,
507
, p.
230314
.10.1016/j.jpowsour.2021.230314
83.
Huang
,
Y.
,
Tang
,
Y.
,
Yuan
,
W.
,
Fang
,
G.
,
Yang
,
Y.
,
Zhang
,
X.
,
Wu
,
Y.
,
Yuan
,
Y.
,
Wang
,
C.
, and
Li
,
J.
,
2021
, “
Challenges and Recent Progress in Thermal Management With Heat Pipes for Lithium-Ion Power Batteries in Electric Vehicles
,”
Sci. China: Technol. Sci.
,
64
(
5
), pp.
919
956
.10.1007/s11431-020-1714-1
84.
Shen
,
Z.-G.
,
Chen
,
S.
,
Liu
,
X.
, and
Chen
,
B.
,
2021
, “
A Review on Thermal Management Performance Enhancement of Phase Change Materials for Vehicle Lithium-Ion Batteries
,”
Renewable Sustainable Energy Rev.
,
148
, p.
111301
.10.1016/j.rser.2021.111301
85.
Mohammed
,
A. G.
,
Elfeky
,
K. E.
, and
Wang
,
Q.
,
2022
, “
Recent Advancement and Enhanced Battery Performance Using Phase Change Materials Based Hybrid Battery Thermal Management for Electric Vehicles
,”
Renewable Sustainable Energy Rev.
,
154
, p.
111759
.10.1016/j.rser.2021.111759
86.
Lv
,
Y.
,
Yang
,
X.
,
Zhang
,
G.
, and
Li
,
X.
,
2019
, “
Experimental Research on the Effective Heating Strategies for a Phase Change Material Based Power Battery Module
,”
Int. J. Heat Mass Transfer
,
128
, pp.
392
400
.10.1016/j.ijheatmasstransfer.2018.07.037
87.
Kritzer
,
P.
,
Döring
,
H.
, and
Emermacher
,
B.
,
2014
, “
Improved Safety for Automotive Lithium Batteries: An Innovative Approach to Include an Emergency Cooling Element
,”
Adv. Chem. Eng. Sci.
,
4
(
2
), pp.
197
207
.10.4236/aces.2014.42023
88.
Liu
,
Y.
,
Gao
,
Q.
,
Wang
,
G.
,
Zhang
,
T.
, and
Zhang
,
Y.
,
2021
, “
Experimental Study on Active Control of Refrigerant Emergency Spray Cooling of Thermal Abnormal Power Battery
,”
Appl. Therm. Eng.
,
182
, p.
116172
.10.1016/j.applthermaleng.2020.116172
89.
Liu
,
T.
,
Liu
,
Y.
,
Wang
,
X.
,
Kong
,
X.
, and
Li
,
G.
,
2019
, “
Cooling Control of Thermally-Induced Thermal Runaway in 18,650 Lithium Ion Battery With Water Mist
,”
Energy Convers. Manage.
,
199
, p.
111969
.10.1016/j.enconman.2019.111969
90.
Qin
,
P.
,
Jia
,
Z.
,
Jin
,
K.
,
Duan
,
Q.
,
Sun
,
J.
, and
Wang
,
Q.
,
2021
, “
The Experimental Study on a Novel Integrated System With Thermal Management and Rapid Cooling for Battery Pack Based on C6F12O Spray Cooling in a Closed-Loop
,”
J. Power Sources
,
516
, p.
230659
.10.1016/j.jpowsour.2021.230659
91.
Hao
,
M.
,
Li
,
J.
,
Park
,
S.
,
Moura
,
S.
, and
Dames
,
C.
,
2018
, “
Efficient Thermal Management of Li-Ion Batteries With a Passive Interfacial Thermal Regulator Based on a Shape Memory Alloy
,”
Nat. Energy
,
3
(
10
), pp.
899
906
.10.1038/s41560-018-0243-8
92.
Du
,
T.
,
Xiong
,
Z.
,
Delgado
,
L.
,
Liao
,
W.
,
Peoples
,
J.
,
Kantharaj
,
R.
,
Chowdhury
,
P. R.
,
Marconnet
,
A.
, and
Ruan
,
X.
,
2021
, “
Wide Range Continuously Tunable and Fast Thermal Switching Based on Compressible Graphene Composite Foams
,”
Nat. Commun.
,
12
(
1
), p.
4915
.10.1038/s41467-021-25083-8
93.
Liu
,
K.
,
Liu
,
Y.
,
Lin
,
D.
,
Pei
,
A.
, and
Cui
,
Y.
,
2018
, “
Materials for Lithium-Ion Battery Safety
,”
Sci. Adv.
,
4
(
6
), p.
eaas9820
.10.1126/sciadv.aas9820
94.
Liu
,
Y.
,
Zhu
,
Y.
, and
Cui
,
Y.
,
2019
, “
Challenges and Opportunities Towards Fast-Charging Battery Materials
,”
Nat. Energy
,
4
(
7
), pp.
540
550
.10.1038/s41560-019-0405-3
95.
Wen
,
L.
,
Liang
,
J.
,
Chen
,
J.
,
Chu
,
Z.-Y.
,
Cheng
,
H.-M.
, and
Li
,
F.
,
2019
, “
Smart Materials and Design Toward Safe and Durable Lithium Ion Batteries
,”
Small Methods
,
3
(
11
), p.
1900323
.10.1002/smtd.201900323
96.
Wang
,
Q.
,
Jiang
,
L.
,
Yu
,
Y.
, and
Sun
,
J.
,
2019
, “
Progress of Enhancing the Safety of Lithium Ion Battery From the Electrolyte Aspect
,”
Nano Energy
,
55
, pp.
93
114
.10.1016/j.nanoen.2018.10.035
97.
Ji
,
Y.
, and
Wang
,
C. Y.
,
2013
, “
Heating Strategies for Li-Ion Batteries Operated From Subzero Temperatures
,”
Electrochim. Acta
,
107
, pp.
664
674
.10.1016/j.electacta.2013.03.147
98.
Wang
,
C.-Y.
,
Zhang
,
G.
,
Ge
,
S.
,
Xu
,
T.
,
Ji
,
Y.
,
Yang
,
X.-G.
, and
Leng
,
Y.
,
2016
, “
Lithium-Ion Battery Structure That Self-Heats at Low Temperatures
,”
Nature
,
529
(
7587
), pp.
515
518
.10.1038/nature16502
99.
Zhang
,
G.
,
Ge
,
S.
,
Xu
,
T.
,
Yang
,
X.-G.
,
Tian
,
H.
, and
Wang
,
C.-Y.
,
2016
, “
Rapid Self-Heating and Internal Temperature Sensing of Lithium-Ion Batteries at Low Temperatures
,”
Electrochim. Acta
,
218
, pp.
149
155
.10.1016/j.electacta.2016.09.117
100.
Zhang
,
G.
,
Ge
,
S.
,
Yang
,
X.-G.
,
Leng
,
Y.
,
Marple
,
D.
, and
Wang
,
C.-Y.
,
2017
, “
Rapid Restoration of Electric Vehicle Battery Performance While Driving at Cold Temperatures
,”
J. Power Sources
,
371
, pp.
35
40
.10.1016/j.jpowsour.2017.10.029
101.
Yang
,
X.-G.
,
Zhang
,
G.
,
Ge
,
S.
, and
Wang
,
C.-Y.
,
2018
, “
Fast Charging of Lithium-Ion Batteries at All Temperatures
,”
Proc. Natl. Acad. Sci.
,
115
(
28
), pp.
7266
7271
.10.1073/pnas.1807115115
102.
Wang
,
C.-Y.
,
Xu
,
T.
,
Ge
,
S.
,
Zhang
,
G.
,
Yang
,
X.-G.
, and
Ji
,
Y.
,
2016
, “
A Fast Rechargeable Lithium-Ion Battery at Subfreezing Temperatures
,”
J. Electrochem. Soc.
,
163
(
9
), pp.
A1944
A1950
.10.1149/2.0681609jes
103.
Yang
,
X.-G.
,
Liu
,
T.
,
Gao
,
Y.
,
Ge
,
S.
,
Leng
,
Y.
,
Wang
,
D.
, and
Wang
,
C.-Y.
,
2019
, “
Asymmetric Temperature Modulation for Extreme Fast Charging of Lithium-Ion Batteries
,”
Joule
,
3
(
12
), pp.
3002
3019
.10.1016/j.joule.2019.09.021
104.
Wang
,
C. Y.
,
Liu
,
T.
,
Yang
,
X. G.
,
Ge
,
S.
,
Stanley
,
N. V.
,
Rountree
,
E. S.
,
Leng
,
Y.
, and
McCarthy
,
B. D.
,
2022
, “
Fast Charging of Energy-Dense Lithium-Ion Batteries
,”
Nature
,
611
(
7936
), pp.
485
490
.10.1038/s41586-022-05281-0
105.
Ge
,
S.
,
Leng
,
Y.
,
Liu
,
T.
,
Longchamps
,
R. S.
,
Yang
,
X.-G.
,
Gao
,
Y.
,
Wang
,
D.
,
Wang
,
D.
, and
Wang
,
C.-Y.
,
2020
, “
A New Approach to Both High Safety and High Performance of Lithium-Ion Batteries
,”
Sci. Adv.
,
6
(
9
), p.
eaay7633
.10.1126/sciadv.aay7633
106.
Ge
,
S.
,
Longchamps
,
R. S.
,
Liu
,
T.
,
Liao
,
J.
,
Leng
,
Y.
, and
Wang
,
C.-Y.
,
2021
, “
High Safety and Cycling Stability of Ultrahigh Energy Lithium Ion Batteries
,”
Cell Rep. Phys. Sci.
,
2
(
10
), p.
100584
.10.1016/j.xcrp.2021.100584
107.
Aiken
,
C. P.
,
Logan
,
E. R.
,
Eldesoky
,
A.
,
Hebecker
,
H.
,
Oxner
,
J. M.
,
Harlow
,
J. E.
,
Metzger
,
M.
, and
Dahn
,
J. R.
,
2022
, “
Li[Ni0.5Mn0.3Co0.2]O2 as a Superior Alternative to LiFePO4 for Long-Lived Low Voltage Li-Ion Cells
,”
J. Electrochem. Soc.
,
169
(
5
), p.
050512
.10.1149/1945-7111/ac67b5
108.
Zhang
,
G.
,
Cao
,
L.
,
Ge
,
S.
,
Wang
,
C.-Y.
,
Shaffer
,
C. E.
, and
Rahn
,
C. D.
,
2015
, “
Reaction Temperature Sensing (RTS)-Based Control for Li-Ion Battery Safety
,”
Sci. Rep.
,
5
(
1
), p.
18237
. 10.1038/srep18237
109.
Yang
,
L.
,
Li
,
N.
,
Hu
,
L.
,
Wang
,
S.
,
Wang
,
L.
,
Zhou
,
J.
,
Song
,
W.-L.
,
Sun
,
L.
,
Pan
,
T.-S.
,
Chen
,
H.-S.
, and
Fang
,
D.
,
2021
, “
Internal Field Study of 21700 Battery Based on Long-Life Embedded Wireless Temperature Sensor
,”
Acta Mech. Sin.
,
37
(
6
), pp.
895
901
.10.1007/s10409-021-01103-0
110.
Marsic
,
V.
,
Amietszajew
,
T.
,
Igic
,
P.
,
Faramehr
,
S.
, and
Fleming
,
J.
,
2022
, “
Wireless Communication Test on 868 MHz and 2.4 GHz From Inside the 18650 Li-Ion Enclosed Metal Shell
,”
Sensors (Basel)
,
22
(
5
), p.
1966
.10.3390/s22051966
111.
Gulsoy
,
B.
,
Vincent
,
T. A.
,
Sansom
,
J. E. H.
, and
Marco
,
J.
,
2022
, “
In-Situ Temperature Monitoring of a Lithium-Ion Battery Using an Embedded Thermocouple for Smart Battery Applications
,”
J. Energy Storage
,
54
, p.
105260
.10.1016/j.est.2022.105260
112.
Vincent
,
T. A.
,
Gulsoy
,
B.
,
Sansom
,
J. E. H.
, and
Marco
,
J.
,
2022
, “
In-Situ Instrumentation of Cells and Power Line Communication Data Acquisition Towards Smart Cell Development
,”
J. Energy Storage
,
50
, p.
104218
.10.1016/j.est.2022.104218
113.
Li
,
Y.
,
Wang
,
W.
,
Yang
,
X.-G.
,
Zuo
,
F.
,
Liu
,
S.
, and
Lin
,
C.
,
2022
, “
A Smart Li-Ion Battery With Self-Sensing Capabilities for Enhanced Life and Safety
,”
J. Power Sources
,
546
, p.
231705
.10.1016/j.jpowsour.2022.231705
114.
Wu
,
H.
,
Zhuo
,
D.
,
Kong
,
D.
, and
Cui
,
Y.
,
2014
, “
Improving Battery Safety by Early Detection of Internal Shorting With a Bifunctional Separator
,”
Nat. Commun.
,
5
(
1
), p.
5193
.10.1038/ncomms6193
115.
Wang
,
M.
,
Le
,
A. V.
,
Noelle
,
D. J.
,
Shi
,
Y.
,
Meng
,
Y. S.
, and
Qiao
,
Y.
,
2017
, “
Internal-Short-Mitigating Current Collector for Lithium-Ion Battery
,”
J. Power Sources
,
349
, pp.
84
93
.10.1016/j.jpowsour.2017.03.004
116.
Naguib
,
M.
,
Allu
,
S.
,
Simunovic
,
S.
,
Li
,
J.
,
Wang
,
H.
, and
Dudney
,
N. J.
,
2018
, “
Limiting Internal Short-Circuit Damage by Electrode Partition for Impact-Tolerant Li-Ion Batteries
,”
Joule
,
2
(
1
), pp.
155
167
.10.1016/j.joule.2017.11.003
117.
Pham
,
M. T. M.
,
Darst
,
J. J.
,
Walker
,
W. Q.
,
Heenan
,
T. M. M.
,
Patel
,
D.
,
Iacoviello
,
F.
,
Rack
,
A.
,
Olbinado
,
M. P.
,
Hinds
,
G.
,
Brett
,
D. J. L.
,
Darcy
,
E.
,
Finegan
,
D. P.
, and
Shearing
,
P. R.
,
2021
, “
Prevention of Lithium-Ion Battery Thermal Runaway Using Polymer-Substrate Current Collectors
,”
Cell Rep. Phys. Sci.
,
2
(
3
), p.
100360
.10.1016/j.xcrp.2021.100360
118.
Ye
,
Y.
,
Chou
,
L.-Y.
,
Liu
,
Y.
,
Wang
,
H.
,
Lee
,
H. K.
,
Huang
,
W.
,
Wan
,
J.
, et al.,
2020
, “
Ultralight and Fire-Extinguishing Current Collectors for High-Energy and High-Safety Lithium-Ion Batteries
,”
Nat. Energy
,
5
(
10
), pp.
786
793
.10.1038/s41560-020-00702-8
119.
Hunt
,
I. A.
,
Zhao
,
Y.
,
Patel
,
Y.
, and
Offer
,
G. J.
,
2016
, “
Surface Cooling Causes Accelerated Degradation Compared to Tab Cooling for Lithium-Ion Pouch Cells
,”
J. Electrochem. Soc.
,
163
(
9
), pp.
A1846
A1852
.10.1149/2.0361609jes
120.
Zhao
,
Y.
,
Patel
,
Y.
,
Zhang
,
T.
, and
Offer
,
G. J.
,
2018
, “
Modeling the Effects of Thermal Gradients Induced by Tab and Surface Cooling on Lithium Ion Cell Performance
,”
J. Electrochem. Soc.
,
165
(
13
), pp.
A3169
A3178
.10.1149/2.0901813jes
121.
Li
,
S.
,
Kirkaldy
,
N.
,
Zhang
,
C.
,
Gopalakrishnan
,
K.
,
Amietszajew
,
T.
,
Diaz
,
L. B.
,
Barreras
,
J. V.
,
Shams
,
M.
,
Hua
,
X.
,
Patel
,
Y.
,
Offer
,
G. J.
, and
Marinescu
,
M.
,
2021
, “
Optimal Cell Tab Design and Cooling Strategy for Cylindrical Lithium-Ion Batteries
,”
J. Power Sources
,
492
, p.
229594
.10.1016/j.jpowsour.2021.229594
122.
Frank
,
A.
,
Sturm
,
J.
,
Steinhardt
,
M.
,
Rheinfeld
,
A.
, and
Jossen
,
A.
,
2022
, “
Impact of Current Collector Design and Cooling Topology on Fast Charging of Cylindrical Lithium-Ion Batteries
,”
ECS Adv.
,
1
(
4
), p.
040502
.10.1149/2754-2734/ac97e0
123.
Tsuruta
,
K.
,
Dermer
,
M. E.
, and
Dhiman
,
R.
,
2020
, “
Cell With a Tabless Electrode
,” U.S. Patent No. US20200144676A1.
124.
Lee
,
K.-J.
,
Smith
,
K.
,
Pesaran
,
A.
, and
Kim
,
G.-H.
,
2013
, “
Three Dimensional Thermal-, Electrical-, and Electrochemical-Coupled Model for Cylindrical Wound Large Format Lithium-Ion Batteries
,”
J. Power Sources
,
241
, pp.
20
32
.10.1016/j.jpowsour.2013.03.007
125.
Zhao
,
W.
,
Luo
,
G.
, and
Wang
,
C.-Y.
,
2014
, “
Effect of Tab Design on Large-Format Li-Ion Cell Performance
,”
J. Power Sources
,
257
, pp.
70
79
.10.1016/j.jpowsour.2013.12.146
126.
Sumpf
,
J.
,
David
,
R.
,
Pires
,
A.
,
Stockton
,
W. B.
,
Spooner
,
C.
,
Prodan
,
C.
,
Gorasia
,
J. B.
,
Harris
,
K.
,
Burke
,
D.
,
Szafer
,
D. G.
,
Patel
,
K.
,
Parker
,
B.
, and
Hegeman
,
D. E.
,
2021
, “
Integrated Energy Storage System
,” Patent No. WO2021102340.
127.
He
,
L.
,
Sun
,
H.
,
Jiang
,
W.
,
Lu
,
Z.
,
Zheng
,
W.
,
Tang
,
J.
,
Zhu
,
Y.
,
Wang
,
X.
, and
He
,
K.
,
2020
, “
Power Battery Pack and Electric Vehicle
,” Patent No. WO2020143174A1.
128.
Dik
,
A.
,
Omer
,
S.
, and
Boukhanouf
,
R.
,
2022
, “
Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration
,”
Energies
,
15
(
3
), p.
803
.10.3390/en15030803
129.
Zhang
,
Y.
,
Ma
,
J.
,
Singh
,
A. K.
,
Cao
,
L.
,
Seo
,
J.
,
Rahn
,
C. D.
,
Bakis
,
C. E.
, and
Hickner
,
M. A.
,
2017
, “
Multifunctional Structural Lithium-Ion Battery for Electric Vehicles
,”
J. Intell. Mater. Syst. Struct.
,
28
(
12
), pp.
1603
1613
.10.1177/1045389X16679021
130.
Thompson
,
D. L.
,
Hartley
,
J. M.
,
Lambert
,
S. M.
,
Shiref
,
M.
,
Harper
,
G. D. J.
,
Kendrick
,
E.
,
Anderson
,
P.
,
Ryder
,
K. S.
,
Gaines
,
L.
, and
Abbott
,
A. P.
,
2020
, “
The Importance of Design in Lithium Ion Battery Recycling—A Critical Review
,”
Green Chem.
,
22
(
22
), pp.
7585
7603
.10.1039/D0GC02745F
You do not currently have access to this content.