Abstract

This study focuses on the heat transfer performance of a pulsating flow over a channel surface with teardrop-shaped dimples. Heat transfer measurements were performed by a transient technique with compensation of three-dimensional heat conduction under a bulk Reynolds number of 25,000. Seven types of surfaces with the teardrop-shaped dimples were examined, where dimple arrangement (in-line/staggered) and inclination angle (0–60 deg) were varied. A pulsating flow with the Strouhal number of 0.15 was generated by vibrating a rubber film section on the channel wall using a vibration generator. The pulsation amplitude was evaluated by calculating the root-mean-square value of the phase averaged velocity. Two conditions of the pulsation amplitudes were examined (0.09 and 0.12 of mean velocity). The results showed that the surface-averaged Nusselt number and friction factor for the pulsating flow increased from those for the steady flow. The highest increases of the surface-averaged Nusselt number and heat transfer efficiency index appeared in the 30 deg in-line arrangement, and those were 16.1% and 9.8%, respectively, at most as compared with the steady case. Due to the flow pulsation, the local Nusselt number was enhanced at the leading-edge region of the dimples, and supplementary Reynolds averaged Navier–Stokes (RANS)/unsteady RANS (URANS) results showed that the flow separation size was shrunk by the flow pulsation there.

References

1.
Masci
,
R.
, and
Sciubba
,
E.
,
2018
, “
A Lumped Thermodynamic Model of Gas Turbine Blade Cooling: Prediction of First-Stage Blades Temperature and Cooling Flow Rates
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020901
.10.1115/1.4038462
2.
Pollock
,
T. M.
,
2016
, “
Alloy Design for Aircraft Engines
,”
Nat. Mater.
,
15
(
8
), pp.
809
815
.10.1038/nmat4709
3.
Han
,
J.-C.
,
Sandip
,
D.
, and
Srinath
,
E.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
, Boca Raton, FL.
4.
Hauser
,
A.
, and
Zuxier
,
T.
,
1974
, “
Pin-Fin Cooling System
,” U.S. Patent No. 3,800,864.
5.
Armstrong
,
J.
, and
Winstanley
,
D.
,
1988
, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
,
110
(
1
), pp.
94
103
.10.1115/1.3262173
6.
Abuaf
,
N.
, and
Kercher
,
D. M.
,
1992
, “
Heat Transfer and Turbulence in a Turbulated Blade Cooling Circuit
,”
ASME
Paper No. 92-GT-187. 10.1115/92-GT-187
7.
Murata
,
A.
, and
Mochizuki
,
S.
,
2003
, “
Effect of Cross-Sectional Aspect Ratio on Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Duct With Angled Rib Turbulators
,”
Int. J. Heat Mass Transf
er,
46
(
16
), pp.
3119
3133
.10.1016/S0017-9310(03)00080-2
8.
Acharya
,
S.
,
Zhou
,
F.
,
Lagrone
,
J.
,
Mahmood
,
G.
, and
Bunker
,
R. S.
,
2004
, “
Latticework (Vortex) Cooling Effectiveness: Rotating Channel Experiments
,”
ASME J. Turbomach.
,
127
(
3
), pp.
471
478
.10.1115/1.1860381
9.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2000
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(
1
), pp.
115
123
.10.1115/1.1333694
10.
Murata
,
A.
,
Mochizuki
,
S.
,
Nakamata
,
C.
, and
Okita
,
Y.
,
2008
, “
Large Eddy Simulation of Turbulent Heat Transfer in Stationary Channels With Dimples, Protrusions, and Ribs
,”
Int. J. Transp. Phenom.
,
10
(
4
), pp.
323
336
.https://www.oldcitypublishing.com/journals/ijtphome/ijtp-issue-contents/ijtp-volume-10-number-4-2008/ijtp-10-4-p-323-336/
11.
Acharya
,
S.
, and
Zhou
,
F.
,
2012
, “
Experimental and Computational Study of Heat/Mass Transfer and Flow Structure for Four Dimple Shapes in a Square Internal Passage
,”
ASME J. Turbomach.
,
134
(
6
), p.
061028
.10.1115/1.4006315
12.
Leontiev
,
A. I.
,
Kiselev
,
N. A.
,
Vinogradov
,
Y. A.
,
Strongin
,
M. M.
,
Zditovets
,
A. G.
, and
Burtsev
,
S. A.
,
2017
, “
Experimental Investigation of Heat Transfer and Drag on Surfaces Coated With Dimples of Different Shape
,”
Int. J. Therm. Sci.
,
118
, pp.
152
167
.10.1016/j.ijthermalsci.2017.04.027
13.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
,
1997
, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,”
ASME
Paper No. 97-GT-437. 10.1115/97-GT-437
14.
Rao
,
Y.
,
Li
,
B.
, and
Feng
,
Y.
,
2015
, “
Heat Transfer of Turbulent Flow Over Surfaces With Spherical Dimples and Teardrop Dimples
,”
Exp. Therm. Fluid Sci.
,
61
, pp.
201
209
.10.1016/j.expthermflusci.2014.10.030
15.
Nishida
,
S.
,
Murata
,
A.
,
Saito
,
H.
, and
Iwamoto
,
K.
,
2009
, “
Measurement of Heat and Fluid Flow on Surface With Teardrop-Shaped Dimples
,”
Proceedings of the Asian Congress on Gas Turbines
, Tokyo, Japan, Aug. 24–26, pp.
1
4
.
16.
Nishida
,
S.
,
Murata
,
A.
,
Saito
,
H.
, and
Iwamoto
,
K.
,
2010
, “
Compensation of Three-Dimensional Heat Transfer Measurement of Dimpled Surface by Using Transient Technique
,”
Trans. JSME
,
76
(
772
), pp.
2227
2234
.10.1299/kikaib.76.772_2227
17.
Nishida
,
S.
,
Murata
,
A.
,
Saito
,
H.
, and
Iwamoto
,
K.
,
2012
, “
Compensation of Three-Dimensional Heat Conduction Inside Wall in Heat Transfer Measurement of Dimpled Surface by Using Transient Technique
,”
J. Enhanced Heat Transfer
,
19
(
4
), pp.
331
341
.10.1615/JEnhHeatTransf.2012003016
18.
Jin
,
D. X.
,
Lee
,
Y. P.
, and
Lee
,
D.-Y.
,
2007
, “
Effects of the Pulsating Flow Agitation on the Heat Transfer in a Triangular Grooved Channel
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
3062
3071
.10.1016/j.ijheatmasstransfer.2006.12.001
19.
Davletshin
,
I. A.
,
Mikheev
,
A. N.
,
Mikheev
,
N. I.
, and
Shakirov
,
R. R.
,
2020
, “
Heat Transfer and Structure of Pulsating Flow Behind a Rib
,”
Int. J. Heat Mass Transfer
,
160
, p.
120173
.10.1016/j.ijheatmasstransfer.2020.120173
20.
Yang
,
B.
,
Gao
,
T.
,
Gong
,
J.
, and
Li
,
J.
,
2018
, “
Numerical Investigation on Flow and Heat Transfer of Pulsating Flow in Various Ribbed Channels
,”
Appl. Therm. Eng.
,
145
, pp.
576
589
.10.1016/j.applthermaleng.2018.09.041
21.
Islam
,
A. N.
,
Murata
,
A.
,
Oho
,
K.
,
Yamamoto
,
S.
, and
Iwamoto
,
K.
,
2018
, “
Effects of Rotation Angle of Teardrop-Shaped Dimples on Heat Transfer Enhancement of Airfoil Internal Cooling Investigated by Transient Technique
,”
Proceedings of the 16th International Heat Transfer Conference
,
Beijing, China
, Aug. 10–15, pp.
5537
5542
.10.1615/IHTC16.hte.023228
22.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
, 3rd ed.,
McGraw-Hill
,
Hightstown, NJ
, p.
316
.
23.
Dean
,
R. B.
,
1978
, “
Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
215
223
.10.1115/1.3448633
24.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced-Convection Heat-Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
23
(
8
), pp.
1127
1136
.10.1016/0017-9310(80)90177-5
25.
ANSI/ASME PTC 19.1,
1985
, “
Measurement Uncertainty
,” ASME, New York.
26.
Inokuma
,
K.
,
Yawata
,
Y.
,
Murata
,
A.
, and
Iwamoto
,
K.
,
2024
, “
Effects of Flow Pulsation and Surface Geometry on Heat Transfer Performance in a Channel With Teardrop-Shaped Dimples Investigated by Large Eddy Simulation
,”
ASME J. Heat Mass Transfer
,
146
(
6
), p.
061801
.10.1115/1.4064735
27.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
28.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
29.
Murata
,
A.
,
Yano
,
K.
,
Hanai
,
M.
,
Saito
,
H.
, and
Iwamoto
,
K.
,
2017
, “
Arrangement Effects of Inclined Teardrop-Shaped Dimples on Film Cooling Performance of Dimpled Cutback Surface at Airfoil Trailing Edge
,”
Int. J. Heat Mass Transf
er,
107
, pp.
761
770
.10.1016/j.ijheatmasstransfer.2016.11.081
30.
Rashidi
,
S.
,
Hormozi
,
F.
,
Sundén
,
B.
, and
Mahian
,
O.
,
2019
, “
Energy Saving in Thermal Systems Using Dimpled Surface Technology—A Review on Mechanisms and Applications
,”
Appl. Energy
,
250
, pp.
1491
1547
.10.1016/j.apenergy.2019.04.168
You do not currently have access to this content.