Abstract

The present study focuses on the measurement of the local heat transfer distribution of a smooth flat plate impinged by an array of free surface jets on a thin metal foil. Local Nusselt number distributions are measured for a fixed jet diameter (d = 3 mm). The jet arrays consist of perfectly round apertures arranged in a square pattern, with a uniform spacing of 4d between adjacent jets in both streamwise and spanwise directions. A wide range of Reynolds numbers varying from 1000 to 12,500 are covered in this study. The nozzle to plate spacing (z/d) is varied between 1 and 10. The effect of the Reynolds number and nozzle to plate spacing on the local and spanwise average Nusselt number distributions are studied. The local and average Nusselt numbers are found to be symmetric in streamwise and spanwise directions and they follow a periodic pattern. The local Nusselt number exhibits an increase with nozzle-to-plate spacing within the low Reynolds number range (Re = 1000–2500). However, for Reynolds numbers exceeding 2500, the influence of nozzle-to-plate spacing on Nusselt number distributions remains negligible up to a nozzle-to-plate distance (z/d) of 5. Beyond this point, there is a gradual decrease in the Nusselt number value. The Nusselt number value gradually decreases beyond z/d of 5. At a Reynolds number of 1500, the Nusselt number increases by 71% for z/d = 10 in comparison to z/d = 1. Empirical correlations for local and spanwise average Nusselt number are proposed which satisfactorily predict the local as well as spanwise average Nusselt number distributions.

References

1.
Yi
,
L.
,
Chen
,
C.
,
Duan
,
F.
, and
Pan
,
M.
,
2023
, “
Power Consumption and Thermal Performance of Integrated Spray and Jet Array Cooling Vapor Chambers
,”
Appl. Therm. Eng.
,
218
, p.
119266
.10.1016/j.applthermaleng.2022.119266
2.
Zhang
,
Y.
,
Wang
,
S.
, and
Liu
,
Z.
,
2023
, “
Effect of Fluid Distribution on the Cooling Performance of Hybrid Microchannel and Slot-Jet Impingement System
,”
Appl. Therm. Eng.
,
222
, p.
119913
.10.1016/j.applthermaleng.2022.119913
3.
Kumar
,
A.
,
Kothari
,
R.
,
Sahu
,
S. K.
, and
Kundalwal
,
S. I.
,
2021
, “
A Comparative Study and Optimization of Phase Change Material Based Heat Sinks for Thermal Management of Electronic Components
,”
J. Energy Storage
,
43
, p.
103224
.10.1016/j.est.2021.103224
4.
Katti
,
V.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Study and Theoretical Analysis of Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet From a Circular Straight Pipe Nozzle
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4480
4495
.10.1016/j.ijheatmasstransfer.2007.12.024
5.
Liu
,
X.
, and
Lienhard
,
J. H.
,
1993
, “
Extremely High Heat Fluxes Beneath Impinging Liquid Jets
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
115
(
2
), pp.
472
476
.10.1115/1.2910703
6.
Garimella
,
S. V.
, and
Schroeder
,
V. P.
,
2001
, “
Local Heat Transfer Distributions in Confined Multiple Air Jet Impingement
,”
ASME J. Electron. Packag.
,
123
(
3
), pp.
165
172
.10.1115/1.1371923
7.
Penumadu
,
P. S.
, and
Rao
,
A. G.
,
2017
, “
Numerical Investigations of Heat Transfer and Pressure Drop Characteristics in Multiple Jet Impingement System
,”
App. Therm. Eng.
,
110
, pp.
1511
1524
.10.1016/j.applthermaleng.2016.09.057
8.
Gharraei
,
R.
,
Vejdani
,
A.
,
Baheri
,
S.
, and
Davani D
,
A. A.
,
2016
, “
Numerical Investigation on the Fluid Flow and Heat Transfer of non-Newtonian Multiple Impinging Jets
,”
Int. J. Therm. Sci.
,
104
, pp.
257
265
.10.1016/j.ijthermalsci.2016.01.012
9.
Caliskan
,
S.
,
Baskaya
,
S.
, and
Calisir
,
T.
,
2014
, “
Experimental and Numerical Investigation of Geometry Effects on Multiple Impinging Air Jets
,”
Int. J. Heat Mass Transfer
,
75
, pp.
685
703
.10.1016/j.ijheatmasstransfer.2014.04.005
10.
Liu
,
X.
, and
Lienhard
,
J. H.
,
1989
, “
Liquid Jet Impingement Heat Transfer on a Uniform Flux Surface
,”
Heat Transfer Phenom. Radiat. Combust. Fires
,
106
, pp.
523
530
.https://web.mit.edu/lienhard/www/papers/conf/LIULiquid-jet-impingement-heat-transfer-on-a-uniform-flux-surface-ASME-1989.pdf
11.
Lienhard
,
J. H.
,
Liu
,
X.
, and
Gabour
,
L. A.
,
1992
, “
Splattering and Heat Transfer During Impingement of a Turbulent Liquid Jet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
114
(
2
), pp.
362
372
.10.1115/1.2911284
12.
Stevens
,
J.
, and
Webb
,
B. W.
,
1991
, “
Local Heat Transfer Coefficients Under an Axisymmetric, Single-Phase Liquid Jet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
113
(
1
), pp.
71
78
.10.1115/1.2910554
13.
Stevens
,
J.
,
Pan
,
Y.
, and
Webb
,
B. W.
,
1992
, “
Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetric, Impinging Free-Surface Liquid Jets: Part 1-Turbulent Flow Structure
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
114
(
4
), pp.
880
886
.10.1115/1.2911895
14.
Pan
,
Y.
,
Stevens
,
J.
, and
Webb
,
B. W.
,
1992
, “
Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetric, Impinging Free-Surface Liquid Jets: Part 2-Local Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
114
(
4
), pp.
874
879
.10.1115/1.2911896
15.
Liu
,
X.
,
Lienhard
,
J. H.
, and
Lombara
,
J. S.
,
1991
, “
Convective Heat Transfer by Impingement of Circular Liquid Jets
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
113
(
3
), pp.
571
582
.10.1115/1.2910604
16.
Zhao
,
Y.
,
Masuoka
,
T.
,
Tsuruta
,
T.
, and
Ma
,
C.-F.
,
2002
, “
Conjugated Heat Transfer on a Horizontal Surface Impinged by Circular Free-Surface Liquid Jet
,”
JSME Int. J., Ser. B
,
45
(
2
), pp.
307
314
.10.1299/jsmeb.45.307
17.
Baghel
,
K.
,
Sridharan
,
A.
, and
Murallidharan
,
J. S.
,
2019
, “
Numerical Study of Free Surface Jet Impingement on Orthogonal Surface
,”
Int. J. Multiphase Flow
,
113
, pp.
89
106
.10.1016/j.ijmultiphaseflow.2019.01.001
18.
Baghel
,
K.
,
Sridharan
,
A.
, and
Murallidharan
,
J. S.
,
2020
, “
Experimental and Numerical Study of Inclined Free Surface Liquid Jet Impingement
,”
Int. J. Therm. Sci.
,
154
, p.
106389
.10.1016/j.ijthermalsci.2020.106389
19.
Murthy
,
N.
,
Krishnan
,
V.
, and
Reddy
,
A. C.
,
2010
, “
Experimental Investigation of Heat Transfer Enhancement Using Impingement of Multiple Water Jets
,”
Heat Transfer-Asian Res.
,
39
(
4
), pp.
222
231
.10.1002/htj.20291
20.
Javidan
,
M.
, and
Moghadam
,
A. J.
,
2021
, “
Experimental Investigation on Thermal Management of a Photovoltaic Module Using Water-Jet Impingement Cooling
,”
Energy Conv. Manage.
,
228
, p.
113686
.10.1016/j.enconman.2020.113686
21.
Pan
,
Y.
, and
Webb
,
B. W.
,
1995
, “
Heat Transfer Characteristics of Arrays of Free-Surface Liquid Jets
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
4
), pp.
878
883
.10.1115/1.2836305
22.
Robinson
,
A. J.
, and
Schnitzler
,
E.
,
2007
, “
An Experimental Investigation of Free and Submerged Miniature Liquid Jet Array Impingement Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
32
(
1
), pp.
1
13
.10.1016/j.expthermflusci.2006.12.006
23.
Womac
,
D. J.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
,
1993
, “
Correlating Equations for Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
115
(
1
), pp.
106
115
.10.1115/1.2910635
24.
Oh
,
C. H.
,
Lienhard
,
J. H.
, V
,
Younis
,
H. F.
,
Dahbura
,
R. S.
, and
Michels
,
D.
,
1998
, “
Liquid Jet‐Array Cooling Modules for High Heat Fluxes
,”
AIChE J.
,
44
(
4
), pp.
769
779
.10.1002/aic.690440402
25.
Slayzak
,
S. J.
,
Viskanta
,
R.
, and
Incropera
,
F. P.
,
1994
, “
Effects of Interactions Between Adjoining Rows of Circular, Free-Surface Jets on Local Heat Transfer From the Impingement Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
116
(
1
), pp.
106
115
.10.1115/1.2910888
26.
Murthy
,
N.
,
Krishnan
,
V.
, and
Reddy
,
A. C.
,
2010
, “
Parametric Study of Heat Transfer Enhancement Using Impingement of Multiple Water Jets
,”
Int. J. Appl. Eng. Res.
,
5
(
21
), pp.
3553
3564
.https://jntuhceh.ac.in/web/tutorials/faculty/795_I-18.pdf
27.
Moffat
,
R. J.
,
1986
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
88
95
.10.1115/1.3242452
28.
Pan
,
Y.
,
1993
, “
Local Heat Transfer Characteristics of Free Surface Liquid Jets and Jet Arrays
,”
Ph.D. Dissertation
, Department of Mechanical Engineering,
Brigham Young University
, Provo, UT.https://www.proquest.com/openview/b3cf5523959d4c381f74cda19cb5bcad/1?pqorigsite=gscholar&cbl=18750&diss=y
You do not currently have access to this content.