Abstract

Heat transfer and pressure loss characteristics of a novel Vortex rib in a cooling channel have been studied both experimentally and numerically under the Reynolds numbers from 10,000 to 80,000 and rotation numbers from 0 to 0.385. The Vortex rib is proposed by combining W-rib and W-patterned oblong dimple. Compared with the W-rib, the Vortex rib enhances heat transfer by up to 11.4% (Re = 10,000 and Ro = 0.31) while reducing the pressure loss by up to 18.7% (Re = 32,000 and Ro = 0) under non-rotating and rotating conditions. Compared to the W-patterned oblong dimple, the heat transfer of the Vortex rib increases by up to 47.9%. The heat transfer dead zones are significantly improved by near-wall vortex induced by Vortex rib. The Vortex rib can appreciably reduce the turbulent mixing intensity in the mainstream of the cooling fluid but keep the near-wall high turbulent mixing intensity, guaranteeing the turbulent heat transport capacity. Thus, the heat transfer can be improved while maintaining the pressure loss in the channel.

References

1.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
, pp.
1
32
.10.1155/2013/275653
2.
Han
,
J.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.10.1016/0017-9310(88)90235-9
3.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1991
, “
Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
113
(
3
), pp.
590
596
.10.1115/1.2910606
4.
Tanda
,
G.
,
2004
, “
Heat Transfer in Rectangular Channels With Transverse and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
229
243
.10.1016/S0017-9310(03)00414-9
5.
Hagari
,
T.
,
Ishida
,
K.
,
Oda
,
T.
,
Douura
,
Y.
, and
Kinoshita
,
Y.
,
2011
, “
Heat Transfer and Pressure Losses of W-Shaped Small Ribs at High Reynolds Numbers for Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
091901
.10.1115/1.4002878
6.
Al-Hadhrami
,
L.
,
Griffith
,
T.
, and
Han
,
J.-C.
,
2003
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 2) With Five Different Orientations of 45 Deg V-Shaped Rib Turbulators
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
2
), pp.
232
242
.10.1115/1.1561455
7.
Wright
,
L. M.
,
Fu
,
W.-L.
, and
Han
,
J.-C.
,
2004
, “
Thermal Performance of Angled, V-Shaped, and W-Shaped Rib Turbulators in Rotating Rectangular Cooling Channels (AR = 4:1)
,”
ASME J. Turbomach.
,
126
(
4
), pp.
604
614
.10.1115/1.1791286
8.
Fu
,
W.-L.
,
Wright
,
L. M.
, and
Han
,
J.-C.
,
2006
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 2:1) With Discrete Ribs
,”
J. Thermophys. Heat Transfer
,
20
(
3
), pp.
569
582
.10.2514/1.19468
9.
Schukin
,
A. V.
,
Kozlov
,
A. P.
, and
Agachev
,
R. S.
,
2015
, “
Study and Application of Hemispheric Cavities for Surface Heat Transfer Augmentation
,”
ASME
Paper No. 95-GT-059.10.1115/95-GT-059
10.
Huh
,
M.
,
Lei
,
J.
, and
Han
,
J.-C.
,
2012
, “
Influence of Channel Orientation on Heat Transfer in a Two-Pass Smooth and Ribbed Rectangular Channel (AR = 2:1) Under Large Rotation Numbers
,”
ASME J. Turbomach.
,
134
(
1
), p.
011022
.10.1115/1.4003172
11.
Lei
,
J.
,
Han
,
J.-C.
, and
Huh
,
M.
,
2012
, “
Effect of Rib Spacing on Heat Transfer in a Two Pass Rectangular Channel (AR = 2:1) at High Rotation Numbers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
9
), p.
091901
.10.1115/1.4006298
12.
Singh
,
P.
,
Li
,
W.
,
Ekkad
,
S. V.
, and
Ren
,
J.
,
2017
, “
Experimental and Numerical Investigation of Heat Transfer Inside Two-Pass Rib Roughened Duct (AR = 1:2) Under Rotating and Stationary Conditions
,”
Int. J. Heat Mass Transfer
,
113
, pp.
384
398
.10.1016/j.ijheatmasstransfer.2017.05.085
13.
Chen
,
A. F.
,
Shiau
,
C.-C.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2019
, “
Heat Transfer in a Rotating Two-Pass Rectangular Channel Featuring a Converging Tip Turn With Various 45 Deg Rib Coverage Designs
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061015
.10.1115/1.4043471
14.
Chen
,
I.-L.
,
Sahin
,
I.
,
Wright
,
L. M.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2021
, “
Heat Transfer in a Rotating, Two-Pass, Variable Aspect Ratio Cooling Channel With Profiled V-Shaped Ribs
,”
ASME J. Turbomach.
,
143
(
8
), p.
081013
.10.1115/1.4050447
15.
Sahin
,
I.
,
Chen
,
A. F.
,
Shiau
,
C.-C.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2020
, “
Effect of 45-Deg Rib Orientations on Heat Transfer in a Rotating Two-Pass Channel With Aspect Ratio From 4:1 to 2:1
,”
ASME J. Turbomach.
,
142
(
7
), p.
071003
.10.1115/1.4046492
16.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4) With Dimples
,”
ASME J. Turbomach.
,
125
(
3
), pp.
555
563
.10.1115/1.1571850
17.
Liou
,
T.-M.
,
Chang
,
S. W.
,
Chen
,
J. S.
,
Yang
,
T. L.
, and
Lan
,
Y.-A.
,
2009
, “
Influence of Channel Aspect Ratio on Heat Transfer in Rotating Rectangular Ducts With Skewed Ribs at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5309
5322
.10.1016/j.ijheatmasstransfer.2009.07.013
18.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2005
, “
Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4: 1) With Angled Ribs
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
4
), pp.
378
387
.10.1115/1.1860564
19.
Bhansali
,
P. S.
,
Ramakrishnan
,
K. R.
, and
Ekkad
,
S. V.
,
2022
, “
Effect of Pin Fins on Jet Impingement Heat Transfer Over a Rotating Disk
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
4
), p.
042303
.10.1115/1.4053371
20.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
321
330
.10.1115/1.2927879
21.
Winterton
,
R. H. S.
,
1998
, “
Where Did the Dittus and Boelter Equation Come From?
,”
Int. J. Heat Mass Transfer
,
41
(
4–5
), pp.
809
810
.10.1016/S0017-9310(97)00177-4
22.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
23.
Shevchuk
,
I. V.
,
Jenkins
,
S. C.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
,
Neumann
,
S. O.
, and
Schnieder
,
M.
,
2011
, “
Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
5
), p.
051701
.10.1115/1.4003080
24.
Siddique
,
W.
,
El-Gabry
,
L.
,
Shevchuk
,
I. V.
,
Hushmandi
,
N. B.
, and
Fransson
,
T. H.
,
2012
, “
Flow Structure, Heat Transfer and Pressure Drop in Varying Aspect Ratio Two-Pass Rectangular Smooth Channels
,”
Heat Mass Transfer
,
48
(
5
), pp.
735
748
.10.1007/s00231-011-0926-1
25.
Kaur
,
I.
, and
Singh
,
P.
,
2020
, “
Heat and Flow Characteristics of V-Shaped Protrusion/Concavity Combined With Miniature V-Ribs
,”
Numer. Heat Transfer, Part A: Appl.
,
78
(
8
), pp.
359
377
.10.1080/10407782.2020.1793549
26.
Li
,
Y.
,
Rao
,
Y.
,
Wang
,
D.
,
Zhang
,
P.
, and
Wu
,
X.
,
2019
, “
Heat Transfer and Pressure Loss of Turbulent Flow in Channels With Miniature Structured Ribs on One Wall
,”
Int. J. Heat Mass Transfer
,
131
, pp.
584
593
.10.1016/j.ijheatmasstransfer.2018.11.067
27.
Zhang
,
P.
,
Rao
,
Y.
,
Li
,
Y.
, and
Weigand
,
B.
,
2019
, “
Heat Transfer and Turbulent Flow Structure in Channels With Miniature V-Shaped Rib-Dimple Hybrid Structures on One Wall
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
7
), p.
071903
.10.1115/1.4043675
28.
Shevchuk
,
I. V.
,
2016
,
Modelling of Convective Heat and Mass Transfer in Rotating Flows
,
Springer International Publishing Switzerland
, Cham, Switzerland, p.
235
.
You do not currently have access to this content.