Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-2 of 2
Keywords: capillary pressure
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research-Article
J. Heat Mass Transfer. November 2022, 144(11): 111601.
Paper No: HT-21-1599
Published Online: August 23, 2022
... meniscus capillary pressure phase change screen wicks ansys fluent multiphase CFD VOF model electronics cooling heat pipes thermosyphons evaporation-driven flow heat and mass transfer Heat pipes, vapor chambers, thermosyphons, and other two-phase thermal management devices are widely...
Journal Articles
Journal:
Journal of Heat Transfer
Article Type: Research Papers
J. Heat Transfer. February 2008, 130(2): 022602.
Published Online: February 4, 2008
..., and was equal to 0.64. The liquid permeability and maximum capillary pressure of small pores were found to be a linear function of the particle diameter. Similarly, vapor permeability was found to be a linear function of the cluster diameter. The thermal conductivity of monoporous samples was measured to be 142...