Abstract

We present a fast data-driven model predictive control (MPC) strategy for connected and automated vehicles, which can ensure collision avoidance in the presence of uncertainty in shared/predicted trajectory of preceding vehicles. The proposed control strategy focuses on improvement in fuel economy and computational efficiency. We exploit a data-driven modeling approach to identify a linear predictor for the nonlinear system and evaluate a deterministic equivalent of the probabilistic collision avoidance constraint to formulate the equivalent convex optimal control problem. We then develop a hierarchical control framework with sampling-based high-level control and fast MPC-based low-level control. Simulation results show the efficacy of the proposed approach both in terms of computation time and fuel efficiency.

References

1.
Van Mierlo
,
J.
,
Maggetto
,
G.
,
Burgwal
,
E.
, and
Gense
,
R.
,
2004
, “
Driving Style and Traffic Measures—Influence on Vehicle Emissions and Fuel Consumption
,”
Proc. Inst. Mech. Eng. Part D J. Autom. Eng.
,
218
(
1
), pp.
43
50
. 10.1243/095440704322829155
2.
Chang
,
D. J.
, and
Morlok
,
E. K.
,
2005
, “
Vehicle Speed Profiles to Minimize Work and Fuel Consumption
,”
J. Trans. Eng.
,
131
(
3
), pp.
173
182
. 10.1061/(ASCE)0733-947X(2005)131:3(173)
3.
Sciarretta
,
A.
,
De Nunzio
,
G.
, and
Ojeda
,
L. L.
,
2015
, “
Optimal Ecodriving Control: Energy-Efficient Driving of Road Vehicles as an Optimal Control Problem
,”
IEEE Control Syst. Mag.
,
35
(
5
), pp.
71
90
. 10.1109/MCS.2015.2449688
4.
Schmied
,
R.
,
Waschl
,
H.
, and
Del Re
,
L.
,
2015
, “
Extension and Experimental Validation of Fuel Efficient Predictive Adaptive Cruise Control
,”
American Control Conference
,
Chicago, IL
,
July 1–3
, pp.
4753
4758
.
5.
Kamal
,
M. A. S.
,
Mukai
,
M.
,
Murata
,
J.
, and
Kawabe
,
T.
,
2013
, “
Model Predictive Control of Vehicles on Urban Roads for Improved Fuel Economy
,”
IEEE Trans. Control Syst. Technol.
,
21
(
3
), pp.
831
841
. 10.1109/TCST.2012.2198478
6.
Asadi
,
B.
, and
Vahidi
,
A.
,
2011
, “
Predictive Cruise Control: Utilizing Upcoming Traffic Signal Information for Improving Fuel Economy and Reducing Trip Time
,”
IEEE Trans. Control Syst. Technol.
,
19
(
3
), pp.
707
714
. 10.1109/TCST.2010.2047860
7.
Mahler
,
G.
, and
Vahidi
,
A.
,
2014
, “
An Optimal Velocity-Planning Scheme for Vehicle Energy Efficiency Through Probabilistic Prediction of Traffic-Signal Timing
,”
IEEE Trans. Intell. Trans. Syst.
,
15
(
6
), pp.
2516
2523
. 10.1109/TITS.2014.2319306
8.
Bae
,
S.
,
Kim
,
Y.
,
Guanetti
,
J.
,
Borrelli
,
F.
, and
Moura
,
S.
,
2019
, “
Design and Implementation of Ecological Adaptive Cruise Control for Autonomous Driving With Communication to Traffic Lights
,”
American Control Conference
,
Philadelphia, PA
,
July 10–12
, pp.
4628
4634
.
9.
HomChaudhuri
,
B.
,
Vahidi
,
A.
, and
Pisu
,
P.
,
2017
, “
Fast Model Predictive Control-Based Fuel Efficient Control Strategy for a Group of Connected Vehicles in Urban Road Conditions
,”
IEEE Trans. Control Syst. Technol.
,
25
(
2
), pp.
760
767
. 10.1109/TCST.2016.2572603
10.
HomChaudhuri
,
B.
,
Lin
,
R.
, and
Pisu
,
P.
,
2016
, “
Hierarchical Control Strategies for Energy Management of Connected Hybrid Electric Vehicles in Urban Roads
,”
Trans. Res. Part C: Emerg. Technol.
,
62
(
1
), pp.
70
86
. 10.1016/j.trc.2015.11.013
11.
HomChaudhuri
,
B.
,
Vahidi
,
A.
, and
Pisu
,
P.
,
2015
, “
A Fuel Economic Model Predictive Control Strategy for a Group of Connected Vehicles in Urban Roads
,”
American Control Conference
,
Chicago, IL
,
July 1–3
, pp.
2741
2746
.
12.
Sun
,
C.
,
Guanetti
,
J.
,
Borrelli
,
F.
, and
Moura
,
S. J.
,
2020
, “
Optimal Eco-driving Control of Connected and Autonomous Vehicles Through Signalized Intersections
,”
IEEE Int. Things J.
,
7
(
5
), pp.
3759
3773
. 10.1109/JIOT.2020.2968120
13.
Canosa
,
A. F.
, and
HomChaudhuri
,
B.
,
2018
, “
Computationally-Efficient Fuel-Economic High-Level Controller Design for a Group of Connected Vehicles in Urban Roads
,”
ASME Dynamic Systems and Control Conference
,
Atlanta, GA
,
Sept. 30–Oct. 3
, pp.
1
8
.
14.
Canosa
,
A. F.
, and
HomChaudhuri
,
B.
,
2019
, “
Computationally-Efficient Fuel-Economic High-Level Control Strategy for Connected Vehicles With Probabilistic Collision Avoidance
,”
American Control Conference
,
Philadelphia, PA
,
July 10–12
, pp.
3969
3974
.
15.
Wang
,
Y.
, and
Boyd
,
S.
,
2010
, “
Fast Model Predictive Control Using Online Optimization
,”
IEEE Trans. Control Syst. Technol.
,
18
(
2
), pp.
267
278
. 10.1109/TCST.2009.2017934
16.
Proctor
,
J. L.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2016
, “
Dynamic Mode Decomposition With Control
,”
SIAM J. Appl. Dyn. Syst.
,
15
(
1
), pp.
142
161
. 10.1137/15M1013857
17.
Folkestad
,
C.
,
Pastor
,
D.
,
Mezic
,
I.
,
Mohr
,
R.
,
Fonoberova
,
M.
, and
Burdick
,
J.
,
2020
, “
Extended Dynamic Mode Decomposition With Learned Koopman Eigenfunctions for Prediction and Control
,”
American Control Conference
,
Denver, CO
,
July 1–3
, pp.
3906
3913
.
18.
Argonne National Laboratory, Downloadable Dynamometer Database
, https://www.anl.gov/es/downloadable-dynamometer-database
19.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
.
You do not currently have access to this content.