Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Shape memory alloys are a class of soft actuators that can recover strain through a phase change and are capable of biomimetic motion. Despite the advantages of these alloys (e.g., high strength-to-weight ratios, inexpensive cost, and small form factor), their major drawbacks (e.g., limited deformation, complex modeling, and low operating frequency) have limited their practical use. Incorporating these alloys into morphing structures increases their deformation profile but also increases the complexity of modeling. Here, continuous shape memory alloy phase kinetic equations are used to calculate the state of the material and are paired with a dynamic beam model in order to model the dynamic response of these morphing structures. A constant cross section, varying cross section, and series combination actuators are experimentally tested in order to assess the model’s accuracy for varying actuator dimensions. The root mean square errors were 1.60 mm and 1.65 mm for a constant cross section and varying cross section actuator, respectively. Additionally, two unimorph actuators were combined in series and experimentally tested with a payload mass of 10 g and 30 g resulting in an average root mean square error of 1.00 mm and 0.73 mm with a displacement of 21.14 mm and 10.48 mm, respectively. This model proves to be accurate for a variety of actuator configurations and external conditions, which enables shape memory alloy morphing actuators to be more easily designed and implemented in soft robotics and other systems.

References

1.
Coral
,
W.
,
Rossi
,
C.
,
Colorado
,
J.
,
Lemus
,
D.
, and
Barrientos
,
A.
,
2012
, “SMA-Based Muscle-Like Actuation in Biologically Inspired Robots: A State of the Art Review,”
Smart Actuation and Sensing Systems – Recent Advances and Future Challenges
,
G.
Berselli
,
R.
Vertechy
, and
G.
Vassura
, eds.,
IntechOpen
,
Rijeka
.
2.
Wang
,
K.
,
Strandman
,
S.
, and
Zhu
,
X.
,
2017
, “
A Mini Review: Shape Memory Polymers for Biomedical Applications
,”
Front. Chem. Sci. Eng.
,
11
(
2
), pp.
143
153
.
3.
Liu
,
C.
,
Qin
,
H.
, and
Mather
,
P.
,
2007
, “
Review of Progress in Shape-Memory Polymers
,”
J. Mater. Chem.
,
17
(
16
), pp.
1543
1558
.
4.
Lendlein
,
A.
, and
Kelch
,
S.
,
2002
, “
Shape-Memory Polymers
,”
Angew. Chem. Int. Ed.
,
41
(
12
), pp.
2034
2057
.
5.
Fairchild
,
P.
,
Shepard
,
N.
,
Mei
,
Y.
, and
Tan
,
X.
,
2023
, “
Semi-Physical Modeling of Soft Pneumatic Actuators With Stiffness Tuning
,”
ASME Lett. Dyn. Syst. Control
,
3
(
4
), p.
041006
.
6.
Al Saaideh
,
M.
, and
Al Janaideh
,
M.
,
2022
, “
On Prandtl–Ishlinskii Hysteresis Modeling of a Loaded Pneumatic Artificial Muscle
,”
ASME Lett. Dyn. Syst. Control
,
2
(
3
), p.
031008
.
7.
Zamanian
,
A. H.
,
Son
,
D. Y.
,
Krueger
,
P. S.
, and
Richer
,
E.
,
2021
, “
Lumped Parameter Modeling and Snap-Through Stability Analysis of Planar Hydraulically Amplified Dielectric Elastomer Actuators
,”
ASME Lett. Dyn. Syst. Control
,
1
(
1
), p.
011004
.
8.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
9.
Mirvakili
,
S. M.
, and
Hunter
,
I. W.
,
2018
, “
Artificial Muscles: Mechanisms, Applications, and Challenges
,”
Adv. Mater.
,
30
(
6
), p.
1704407
.
10.
Madden
,
J. D.
,
Vandesteeg
,
N. A.
,
Anquetil
,
P. A.
,
Madden
,
P. G.
,
Takshi
,
A.
,
Pytel
,
R. Z.
,
Lafontaine
,
S. R.
,
Wieringa
,
P. A.
, and
Hunter
,
I. W.
,
2004
, “
Artificial Muscle Technology: Physical Principles and Naval Prospects
,”
IEEE J. Ocean. Eng.
,
29
(
3
), pp.
706
728
.
11.
Lagoudas
,
D. C.
, and
Tadjbakhsh
,
I.
,
1993
, “
Deformations of Active Flexible Rods With Embedded Line Actuators
,”
Smart Mater. Struct.
,
2
(
2
), p.
71
.
12.
Villanueva
,
A.
,
Joshi
,
K.
,
Blottman
,
J.
, and
Priya
,
S.
,
2010
, “
A Bio-Inspired Shape Memory Alloy Composite (BISMAC) Actuator
,”
Smart Mater. Struct.
,
19
(
2
), p.
025013
.
13.
Shu
,
S. G.
,
Lagoudas
,
D. C.
,
Hughes
,
D.
, and
Wen
,
J. T.
,
1997
, “
Modeling of a Flexible Beam Actuated by Shape Memory Alloy Wires
,”
Smart Mater. Struct.
,
6
(
3
), p.
265
.
14.
Ryklina
,
E.
,
Prokoshkin
,
S.
,
Khmelevskaya
,
I. Y.
, and
Shakhmina
,
A.
,
2008
, “
One-Way and Two-Way Shape Memory Effect in Thermomechanically Treated TiNi-Based Alloys
,”
Mater. Sci. Eng. A
,
481
(
1
), pp.
134
137
.
15.
Brinson
,
L.
, and
Huang
,
M.
,
1996
, “
Simplifications and Comparisons of Shape Memory Alloy Constitutive Models
,”
J. Intell. Mater. Syst. Struct.
,
7
(
1
), pp.
108
114
.
16.
Kennedy
,
S.
,
Vlajic
,
N.
, and
Perkins
,
E.
,
2023
, “
Cosserat Modeling for Deformation Configuration of Shape Memory Alloy Unimorph Actuators
,”
J. Intell. Mater. Syst. Struct.
,
34
(
6
), pp.
642
652
.
17.
Kennedy
,
S.
,
Price
,
M.
,
Zabala
,
M.
, and
Perkins
,
E.
,
2020
, “
Vibratory Response Characteristics of High-Frequency Shape Memory Alloy Actuators
,”
ASME J. Vib. Acoust.
,
142
(
1
), p.
011004
.
18.
Villanueva
,
A.
,
Smith
,
C.
, and
Priya
,
S.
,
2011
, “
A Biomimetic Robotic Jellyfish (Robojelly) Actuated by Shape Memory Alloy Composite Actuators
,”
Bioinspir. Biomim.
,
6
(
3
), p.
036004
.
19.
Kim
,
H.-I.
,
Han
,
M.-W.
,
Song
,
S.-H.
, and
Ahn
,
S.-H.
,
2016
, “
Soft Morphing Hand Driven by SMA Tendon Wire
,”
Comp. Part B: Eng.
,
105
(
1
), pp.
138
148
.
20.
Rodrigue
,
H.
,
Wei
,
W.
,
Bhandari
,
B.
, and
Ahn
,
S.-H.
,
2015
, “
Fabrication of Wrist-Like SMA-Based Actuator by Double Smart Soft Composite Casting
,”
Smart Mater. Struct.
,
24
(
12
), p.
125003
.
21.
Kennedy
,
S.
,
Shougat
,
M. R. E. U.
, and
Perkins
,
E.
,
2023
, “
Robust Self-Sensing Shape Memory Alloy Actuator Using a Machine Learning Approach
,”
Sens. Actuat. A
,
354
(
1
), p.
114255
.
22.
Shougat
,
M. R. E. U.
,
Kennedy
,
S.
, and
Perkins
,
E.
,
2023
, “
A Self-Sensing Shape Memory Alloy Actuator Physical Reservoir Computer
,”
IEEE Sens. Lett.
,
7
(
5
), p.
6002304
.
23.
Wang
,
W.
,
Li
,
C.
,
Rodrigue
,
H.
,
Yuan
,
F.
,
Han
,
M.-W.
,
Cho
,
M.
, and
Ahn
,
S.-H.
,
2017
, “
Kirigami/Origami-Based Soft Deployable Reflector for Optical Beam Steering
,”
Adv. Funct. Mater.
,
27
(
7
), p.
1604214
.
24.
An
,
N.
,
Li
,
M.
, and
Zhou
,
J.
,
2020
, “
Modeling SMA-Enabled Soft Deployable Structures for Kirigami/Origami Reflectors
,”
Int. J. Mech. Sci.
,
180
(
1
), p.
105753
.
25.
Antman
,
S. S.
,
2005
,
Nonlinear Problems of Elasticity
,
Springer
,
New York, NY
.
26.
Vlajic
,
N.
,
Fitzgerald
,
T.
,
Nguyen
,
V.
, and
Balachandran
,
B.
,
2014
, “
Geometrically Exact Planar Beams With Initial Pre-Stress and Large Curvature: Static Configurations, Natural Frequencies, and Mode Shapes
,”
Int. J. Solids Struct.
,
51
(
19–20
), pp.
3361
3371
.
27.
Rucker
,
D. C.
, and
Webster III
,
R. J.
,
2011
, “
Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading
,”
IEEE Trans. Rob.
,
27
(
6
), pp.
1033
1044
.
28.
Till
,
J.
,
Aloi
,
V.
, and
Rucker
,
C.
,
2019
, “
Real-Time Dynamics of Soft and Continuum Robots Based on Cosserat Rod Models
,”
Int. J. Rob. Res.
,
38
(
6
), pp.
723
746
.
29.
Zotov
,
N.
,
Marzynkevitsch
,
V.
, and
Mittemeijer
,
E. J.
,
2014
, “
Evaluation of Kinetic Equations Describing the Martensite-Austenite Phase Transformation in NiTi Shape Memory Alloys
,”
J. Alloys Compd.
,
616
(
1
), pp.
385
393
.
30.
Gurley
,
A.
,
Lambert
,
T. R.
,
Beale
,
D.
, and
Broughton
,
R.
,
2017
, “
Dual Measurement Self-Sensing Technique of NiTi Actuators for Use in Robust Control
,”
Smart Mater. Struct.
,
26
(
10
), p.
105050
.
31.
Júnior
,
M. L. L.
,
Pino
,
L.
,
Barati
,
M.
,
Saint-Sulpice
,
L.
,
Daniel
,
L.
, and
Chirani
,
S. A.
,
2023
, “
Electric Resistivity Evolution in NiTi Alloys Under Thermomechanical Loading: Phase Proportioning, Elasticity and Plasticity Effects
,”
Smart Mater. Struct.
,
32
(
6
), p.
065002
.
32.
Tanaka
,
K.
,
1990
, “
A Phenomenological Description on Thermomechanical Behavior of Shape Memory Alloys
,”
J. Pressure Vessel Technol.
,
112
(
1
), p.
158
.
33.
Gurley
,
A. R.
,
2017
, “
Enabling Shape Memory Alloys As Actuators For Robotics
,” Ph.D. thesis,
Auburn University
,
Auburn, AL
.
34.
Bergman
,
T.
,
Lavine
,
A.
, and
Incropera
,
F.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed. ed.,
John Wiley & Sons
,
Hoboken, NJ
.
35.
Boetcher
,
S. K. S.
,
2014
, Natural Convection From Circular Cylinders.
36.
Lambert
,
T. R.
,
2017
, “
Modeling and Numerical Simulation of Shape Memory Alloys in Robotics Applications
,” Ph.D. thesis,
Auburn University
,
Auburn, AL
.
37.
Sanfelice
,
R.
,
Copp
,
D.
, and
Nanez
,
P.
,
2013
, “
A Toolbox for Simulation of Hybrid Systems in Matlab/Simulink
,”
HSCC '13: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control
,
Philadelphia, PA
,
Apr. 8–11
, ACM Press, pp.
101
106
.
38.
Churchill
,
C. B.
, and
Shaw
,
J. A.
,
2008
, “
Shakedown Response of Conditioned Shape Memory Alloy Wire
,”
SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring
,
San Diego, CA
,
Apr. 2
, SPIE, pp.
290
301
.
You do not currently have access to this content.