Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article focuses on improving the speed, accuracy, and robustness of autonomous aerial-based chemical sensing for plume mapping and source localization through characterizing, modeling, and feedforward compensation of gas-sensor dynamics. First, the dynamics of three types of gas sensors are modeled. Second, the maximum chemical-mapping speed is calculated and shown to be inversely proportional to sensor time constant. Third, an inversion-based approach is used to compensate for the sensor dynamics to improve mapping throughput. Results show that dynamics compensation enhances the chemical-mapping speed by over five times compared to the uncompensated case. Finally, to further demonstrate utility, the approach is applied to a particle swarm optimization example for plume-source localization. The improvement is observed by how well the agents converge to the true chemical gas source location when gas-sensor dynamics are taken into account. Specifically, for a static Gaussian plume source, feedforward compensation leads to 64% average improvement in localization success, and for a dynamic Quick Urban and Industrial Complex (QUIC) dispersion plume source, a 39% average improvement is observed. These results underscore the importance of sensor dynamics compensation for enhancing mapping and source localization throughput, accuracy, and robustness.

References

1.
Hutchinson
,
M.
,
Oh
,
H.
, and
Chen
,
W.-H.
,
2017
, “
A Review of Source Term Estimation Methods for Atmospheric Dispersion Events Using Static Or Mobile Sensors
,”
Inf. Fusion
,
36
(
36
), pp.
130
148
.
2.
Neumann
,
P. P.
,
Bennetts
,
V. H.
,
Lilienthal
,
A. J.
,
Bartholmai
,
M.
, and
Schiller
,
J. H.
,
2013
, “
Gas Source Localization With a Micro-Drone Using Bio-Inspired and Particle Filter-Based Algorithms
,”
Adv. Rob.
,
27
(
9
), pp.
725
738
.
3.
Kowadlo
,
G.
, and
Russell
,
R. A.
,
2008
, “
Robot Odor Localization: A Taxonomy and Survey
,”
Int. J. Rob. Res.
,
27
(
8
), pp.
869
894
.
4.
Rossi
,
M.
, and
Brunelli
,
D.
,
2016
, “
Autonomous Gas Detection and Mapping With Unmanned Aerial Vehicles
,”
IEEE Trans. Inst. Meas.
,
65
(
4
), pp.
765
775
.
5.
He
,
X.
,
Bourne
,
J. R.
,
Steiner
,
J. A.
,
Mortensen
,
C.
,
Hoffman
,
K. C.
,
Dudley
,
C. J.
,
Rogers
,
B.
,
Cropek
,
D. M.
, and
Leang
,
K. K.
,
2019
, “
Autonomous Chemical Sensing Aerial Robot for Urban/Suburban Environmental Monitoring
,”
IEEE Syst. J.
,
13
(
3
), pp.
3524
3535
.
6.
Bourne
,
J. R.
,
Goodell
,
M.
,
He
,
X.
,
Steiner
,
J.
, and
Leang
,
K. K.
,
2020
, “
Decentralized Multi-Agent Information-Theoretic Control for Target Estimation and Localization: Finding Chemical Leaks
,”
Int. J. Rob. Res.
,
39
(
13
), pp.
1525
1548
.
7.
Fu
,
H.-L.
,
Chen
,
H.-C.
, and
Lin
,
P.
,
2012
, “
APS: Distributed Air Pollution Sensing System on Wireless Sensor and Robot Networks
,”
Comput. Commun.
,
35
(
9
), pp.
1141
1150
.
8.
Lilienthal
,
A. J.
,
Loutfi
,
A.
, and
Duckett
,
T.
,
2006
, “
Airborne Chemical Sensing With Mobile Robots
,”
Sensors
,
6
(
11
), pp.
1616
1678
.
9.
Gatti
,
M.
,
Giulietti
,
F.
, and
Turci
,
M.
,
2015
, “
Maximum Endurance for Battery-Powered Rotary-Wing Aircraft
,”
Aerosp. Sci. Technol.
,
45
, pp.
174
179
.
10.
Meng
,
Q.-H.
,
Yang
,
W.-X.
,
Wang
,
Y.
, and
Zeng
,
M.
,
2011
, “
Collective Odor Source Estimation and Search in Time-Variant Airflow Environments Using Mobile Robots
,”
Sensors
,
11
(
11
), pp.
10415
10443
.
11.
Arshak
,
K.
,
Moore
,
E.
,
Lyons
,
G.
,
Harris
,
J.
, and
Clifford
,
S.
,
2004
, “
A Review of Gas Sensors Employed in Electronic Nose Applications
,”
Sensor Rev.
,
24
(
2
), pp.
181
198
.
12.
Monroy
,
J. G.
,
Gonzalez-Jimenez
,
J.
, and
Blanco
,
J. L.
,
2012
, “
Overcoming the Slow Recovery of MOX Gas Sensors Through a System Modeling Approach
,”
Sensors
,
12
(
10
), pp.
13664
13680
.
13.
Gibson
,
D.
, and
MacGregor
,
C.
,
2013
, “
A Novel Solid State Non-Dispersive Infrared CO2 Gas Sensor Compatible With Wireless and Portable Deploy
,”
Sensors
,
13
(
6
), pp.
7079
7103
.
14.
Sun
,
H. T.
, and
Hsi
,
P. C.
,
2002
, “Non-Dispersive Infrared Gas Sensor.” US Patent 6,469,303.
15.
Yong
,
Y.
,
Moheimani
,
S. O. R.
,
Kenton
,
B. J.
, and
Leang
,
K. K.
,
2012
, “
Invited Review: High-Speed Flexure-Guided Nanopositioning: Mechanical Design and Control Issues
,”
Rev. Sci. Instrum.
,
83
(
12
), p.
121101
.
16.
Feng
,
Y.
,
Teng
,
G.-F.
,
Wang
,
A.-X.
, and
Yao
,
Y.-M.
,
2007
, “
Chaotic Inertia Weight in Particle Swarm Optimization
,”
Second IEEE International Conference on Innovative Computing
,
Kumamoto, Japan
,
Sept. 5–7
, p.
475
475
.
17.
Marini
,
F.
, and
Walczak
,
B.
,
2015
, “
Particle Swarm Optimization (PSO). A Tutorial
,”
Chemometr. Intell. Lab. Syst.
,
149
, pp.
153
165
.
18.
Ozcan
,
E.
, and
Mohan
,
C. K.
,
1998
, “
Analysis of a Simple Particle Swarm Optimization System
,”
Intell. Eng. Syst. Through Artif. Neural Netw.
,
8
, pp.
253
258
.
19.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of the IEEE International Conference on Neural Networks
,
Perth, WA, Australia
,
Nov. 27–Dec. 1
, Vol.
4
, pp.
1942
1948
.
20.
Hanna
,
S. R.
,
Briggs
,
G. A.
, and
Hosker Jr
,
R. P.
,
1982
, Handbook on Atmospheric Diffusion. National Oceanic and Atmospheric Administration, Oak Ridge, TN, USA. Atm. Turbulence and Diff. Lab.
21.
Singh
,
B.
,
Pardyjak
,
E. R.
,
Norgren
,
A.
, and
Willemsen
,
P.
,
2011
, “
Accelerating Urban Fast Response Lagrangian Dispersion Simulations Using Inexpensive Graphics Processor Parallelism
,”
Env. Model. Soft.
,
26
(
6
), pp.
739
750
.
22.
Pasternak
,
Z.
,
Bartumeus
,
F.
, and
Grasso
,
F. W.
,
2009
, “
Lévy-Taxis: A Novel Search Strategy for Finding Odor Plumes in Turbulent Flow-Dominated Environments
,”
J. Phys. A: Math. Theor.
,
42
(
43
), p.
434010
.
23.
Marjovi
,
A.
, and
Marques
,
L.
,
2014
, “
Optimal Swarm Formation for Odor Plume Finding
,”
IEEE Trans. Cybern.
,
44
(
12
), pp.
2302
2315
.
24.
Gunawardena
,
N.
,
Leang
,
K. K.
, and
Pardyjak
,
E.
,
2021
, “
Particle Swarm Optimization for Source Localization in Realistic Complex Urban Environments
,”
Atmos. Environ.
,
262
, p.
118636
.
You do not currently have access to this content.