The dynamic characteristics of a suspension assembly are examined using new numerical and experimental techniques. The p-type finite element method is used to construct a numerical model of the suspension. There are significant advantages in using this approach to analyze these types of structures. The model is verified by an experimental modal analysis system, which has been shown to be effective in the study of small structures. The modelled modal parameters agree within 4.5 percent with the experimental results for 14 modes. Since the experimental system uses an electromagnetic exciter, a ferromagnetic target must be attached to the nonferrous suspension so that it can be excited. Innovative techniques are investigated to improve the attachment of this ferromagnetic target. Furthermore, the finite element model is utilized to evaluate the sensitivity of the modal parameters of the suspension to changes in its geometrical features.

This content is only available via PDF.
You do not currently have access to this content.