This paper presents an improved mechanistic cutting force model for the ball-end milling process. The objective is to accurately model the cutting forces for nonhorizontal and cross-feed cutter movements in 3D finishing ball-end milling. Main features of the model include: (1) a robust cut geometry identification method to establish the complicated engaged area on the cutter; (2) a generalized algorithm to determine the undeformed chip thickness for each engaged cutting edge element; and (3) a comprehensive empirical chip-force relationship to characterize nonhorizontal cutting mechanics. Experimental results have shown that the present model gives excellent predictions of cutting forces in 3D ball-end milling.

1.
Smith
,
S.
, and
Tlusty
,
J.
,
1991
, “
An Overview of Modeling and Simulation of the Milling Process
,”
ASME J. Eng. Ind.
,
113
, pp.
169
175
.
2.
Ehmann
,
K. F.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Lazoglu
,
I.
,
1997
, “
Machining Process Modeling: A Review
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
655
663
.
3.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Lindberg
,
J. R.
,
1982
, “
The Prediction of Cutting Forces in End Milling with Application to Cornering Cuts
,”
Int. J. Mach. Tool Des. Res.
,
22
, pp.
7
22
.
4.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Shareef
,
I. A.
,
1982
, “
The Prediction of Surface Accuracy in End Milling
,”
ASME J. Eng. Ind.
,
104
, pp.
272
278
.
5.
Kline
,
W. A.
, and
DeVor
,
R. E.
,
1983
, “
The Effect of Runout on Cutting Geometry and Forces in End Milling
,”
Int. J. Mach. Tool Des. Res.
,
23
, pp.
123
140
.
6.
Sutherland
,
J. W.
, and
DeVor
,
R. E.
,
1986
, “
An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems
,”
ASME J. Eng. Ind.
,
108
, pp.
269
279
.
7.
Bayoumi
,
A. E.
,
Yucesan
,
G.
, and
Kendall
,
L. A.
,
1994
, “
An Analytic Mechanistic Cutting Force Model for Milling Operations: A Theory and Methodology
,”
ASME J. Eng. Ind.
,
116
, pp.
324
330
.
8.
Bayoumi
,
A. E.
,
Yucesan
,
G.
, and
Kendall
,
L. A.
,
1994
, “
An Analytic Mechanistic Cutting Force Model for Milling Operations: A Case Study of Helical Milling Operation
,”
ASME J. Eng. Ind.
,
116
, pp.
331
339
.
9.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
E. J. A.
,
1996
, “
Prediction of Milling Force Coefficients from Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
216
224
.
10.
Zheng
,
L.
,
Liang
,
S. Y.
, and
Melkote
,
S. N.
,
1998
, “
Angle Domain Analytical Model for End Milling Forces
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
252
258
.
11.
Yang
,
M.
, and
Park
,
H.
,
1991
, “
The Prediction of Cutting Force in Ball-End Milling
,”
Int. J. Mach. Tools Manuf.
,
31
, pp.
45
54
.
12.
Sim
,
C.
, and
Yang
,
M.
,
1993
, “
The Prediction of the Cutting Force in Ball-End Milling with a Flexible Cutter
,”
Int. J. Mach. Tools Manuf.
,
33
, pp.
267
284
.
13.
Feng
,
H. Y.
, and
Menq
,
C. H.
,
1994
, “
The Prediction of Cutting Forces in the Ball-End Milling Process— I. Model Formulation and Model Building Procedure
,”
Int. J. Mach. Tools Manuf.
,
34
, pp.
697
710
.
14.
Feng
,
H. Y.
, and
Menq
,
C. H.
,
1994
, “
The Prediction of Cutting Forces in the Ball-End Milling Process— II. Cut Geometry Analysis and Model Verification,
Int. J. Mach. Tools Manuf.
,
34
, pp.
711
720
.
15.
Feng
,
H. Y.
, and
Menq
,
C. H.
,
1996
, “
A Flexible Ball-End Milling System Model for Cutting Force and Machining Error Prediction
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
461
469
.
16.
Yucesan
,
G.
, and
Altintas
,
Y.
,
1996
, “
Prediction of Ball End Milling Forces
,”
ASME J. Eng. Ind.
,
118
, pp.
95
103
.
17.
Abrari
,
F.
, and
Elbestawi
,
M. A.
,
1997
, “
Closed Form Formulation of Cutting Forces for Ball and Flat End Mills
,”
Int. J. Mach. Tools Manuf.
,
37
, pp.
17
27
.
18.
El Mounayri, H., Imani, B. M., Elbestawi, M. A., and Spence, A. D., 1997, “Closing the Gap between CAD/CAM and Machining Process Simulation: A Generic Solution,” Manufacturing Science and Technology,, MED-Vol. 6-2, pp. 127–134, The 1997 ASME International Mechanical Engineering Congress and Exposition, Symposium on Predictive Modeling in Metal Cutting as Means of Bridging the Gap Between Theory and Practice, Dallas, Texas, November 17–21, 1997.
19.
El Mounayri
,
H.
,
Spence
,
A. D.
, and
Elbestawi
,
M. A.
,
1998
, “
Milling Process Simulation—A General Solid Modeller Based Paradigm
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
213
221
.
20.
Wang
,
J.-J. J.
, and
Liang
,
S. Y.
,
1996
, “
Chip Load Kinematics in Milling with Radial Cutter Runout
,”
ASME J. Eng. Ind.
,
118
, pp.
111
116
.
21.
Zheng
,
L.
, and
Liang
,
S. Y.
,
1997
, “
Identification of Cutter Axis Tilt in End Milling
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
178
185
.
22.
Yellowley
,
I.
,
1985
, “
Observations on the Mean Values of Forces, Torque and Specific Power in the Peripheral Milling Process
,”
Int. J. Mach. Tool Des. Res.
,
25
, pp.
337
346
.
23.
Nakayama
,
K.
, and
Tamura
,
K.
,
1968
, “
Size Effect in Metal-Cutting Force
,”
ASME J. Eng. Ind.
,
90
, pp.
119
126
.
24.
Melkote
,
S. N.
, and
Endres
,
W. J.
,
1998
, “
The Importance of Including Size Effect When Modeling Slot Milling
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
68
75
.
25.
Fussell
,
B. K.
, and
Srinivasan
,
K.
,
1989
, “
An Investigation of the End Milling Process Under Varying Machining Conditions
,”
ASME J. Eng. Ind.
,
111
, pp.
27
36
.
26.
Gu
,
F.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Bandyopadhyay
,
P.
,
1991
, “
An Approach to On-line Cutter Runout Estimation in Face Milling
,”
Trans. NAMRI/SME
,
19
, pp.
240
247
.
You do not currently have access to this content.