Nano-electromachining (nano-EM) is a process in which electric fields applied across sub-20 nm tool-workpiece gaps in organic dielectrics (n-decane C10H22 and n-undecane C12H26) are used to produce nanometer size features (8–80 nm) in electrically conductive materials. In order to improve the speed of nano-EM for manufacturing, utilization of pulse breakdown phenomena is studied. Linear behavior of Paschen curves for pulse breakdown demonstrated the predictability of pulse nano-EM process. The discharge current in the machining gap showed exponential decay behavior in the post-breakdown regime with certain delay. This delay in current recovery may present a limit to improving nano-EM production speeds and suggests a need for external pressurized dielectric flow over self-guided diffusion. Other notable effects such as adsorption compression limited dielectric diffusion and the variation in the recovery current with the tool-workpiece gap along with their engineering implications are discussed.

1.
Malshe
,
A. P.
,
Virwani
,
K.
,
Rajurkar
,
K.
, and
Deshpande
,
D.
, 2005, “
Investigation of Nanoscale Electro Machining (Nano-EM) in Dielectric Oil
,”
CIRP Ann.
0007-8506,
54
(
1
), pp.
175
178
.
2.
Virwani
,
K. R.
,
Malshe
,
A. P.
, and
Rajurkar
,
K. P.
, 2007, “
Understanding Sub-20 nm Breakdown Behavior of Liquid Dielectrics
,”
Phys. Rev. Lett.
0031-9007,
99
(
1
), p.
017601
.
3.
Hozumi
,
N.
,
Nishioka
,
K.
,
Suematsu
,
T.
,
Murakami
,
Y.
,
Nagao
,
M.
, and
Sakata
,
H.
, 2005, “
Fundamental Study on Self-Healing Insulation Performance of Silicone Rubber Affected by Local Breakdown
,”
Trans. Inst. Electr. Eng. Jpn., Part A
0385-4205,
125-A
(
2
), pp.
172
178
.
4.
Schade
,
E.
, and
Dullni
,
E.
, 2002, “
Recovery of Breakdown Strength of a Vacuum Interrupter After Extinction of High Currents
,”
IEEE Trans. Dielectr. Electr. Insul.
1070-9878,
9
(
2
), pp.
207
215
.
5.
Kunieda
,
M.
,
Hayasaka
,
A.
,
Yang
,
X. D.
,
Sano
,
S.
, and
Araie
,
I.
, 2007, “
Study on Nano EDM Using Capacity Coupled Pulse Generator
,”
CIRP Ann.
0007-8506,
56
, pp.
213
216
.
6.
Reed
,
M. A.
, 2004, “
Molecular Electronics: Back Under Control
,”
Nature Mater.
1476-1122,
3
(
5
), pp.
286
287
.
7.
Kolb
,
J. F.
,
Minamitani
,
Y.
,
Xiao
,
S.
,
Kono
,
S.
,
Goan
,
B.
,
Lu
,
X. P.
,
Qian
,
J.
,
Laroussi
,
M.
,
Joshi
,
R. P.
,
Schoenbach
,
K. H.
, and
Schamiloglu
,
E.
, 2004, “
Electrical Breakdown in Polar Liquids
,”
26th Power Modulator Symposium
,
Institute of Electrical and Electronics Engineers Inc.
,
Piscataway, NJ
, p.
271
, Paper No. 08855-1331,.
8.
Kalyanasundaram
,
V.
,
Virwani
,
K.
,
Spearot
,
D.
,
Malshe
,
A.
, and
Rajurkar
,
K.
, 2008, “
Understanding Behavior of Machining Interface and Dielectric Molecular Medium in Nanoscale Electro-Machining
,”
CIRP Ann.
0007-8506,
57
(
1
), pp.
199
202
.
9.
Oliveri
,
S.
,
Kattan
,
R.
, and
Denat
,
A.
, 1992, “
Numerical Study of Single-Vapor-Bubble Dynamics in Insulating Liquids Initiated by Electrical Current Pulses
,”
J. Appl. Phys.
0021-8979,
71
(
1
), pp.
108
112
.
10.
Kunieda
,
M.
,
Lauwers
,
B.
,
Rajurkar
,
K. P.
, and
Schumacher
,
B. M.
, 2005, “
Advancing EDM Through Fundamental Insights Into the Process
,”
CIRP Ann.
0007-8506,
54
(
2
), pp.
64
87
.
11.
Virwani
,
K.
,
Malshe
,
A.
, and
Rajurkar
,
K.
, 2007, “
Understanding Dielectric Breakdown and Related Tool Wear Characteristics in Nanoscale Electro-Machining Process
,”
CIRP Ann.
0007-8506,
56
(
1
), pp.
217
220
.
12.
Earhart
,
R. F.
, 1902, “
Sparking Distances Between Plates for Small Distances
,”
Phys. Rev.
0096-8250,
15
, pp.
163
171
.
13.
Earhart
,
R. F.
, 1908, “
Sparking Potential With Very Short Spark-Lengths
,”
Philos. Mag.
1478-6435,
16
, pp.
48
59
.
14.
Hobbs
,
G. M.
, 1905, “
Relation of P. D. and Spark-Length
,”
Philos. Mag.
1478-6435,
10
, pp.
617
631
.
15.
Forster
,
E. O.
, and
FitzPatrick
,
G. J.
, 1985, “
Electric Breakdown in Dielectric Liquids
,”
Phys. Technol.
0305-4624,
16
(
6
), pp.
282
287
.
16.
Xiao
,
S.
,
Kolb
,
J.
,
Kono
,
S.
,
Katsuki
,
S.
,
Joshi
,
R.
,
Laroussi
,
M.
, and
Schoenbach
,
K.
, 2004, “
High Power Water Switches: Postbreakdown Phenomena and Dielectric Recovery
,”
IEEE Trans. Dielectr. Electr. Insul.
1070-9878,
11
(
4
), pp.
604
612
.
17.
Schaffert
,
R. M.
, 1975,
Electrophotography
,
Focal
,
USA
.
18.
Ibe
,
J. P.
,
Bey
,
P. P.
,
Brandow
,
S. L.
,
Brizzolara
,
R. A.
,
Burnham
,
N. A.
,
DiLella
,
D. P.
,
Lee
,
K. P.
,
Marrian
,
C. R. K.
, and
Colton
,
R. J.
, 1990, “
On the Electrochemical Etching of Tips for Scanning Tunneling Microscopy
,”
J. Vac. Sci. Technol. A
0734-2101,
8
(
4
), pp.
3570
3575
.
19.
Virwani
,
K.
,
Rajurkar
,
K.
, and
Malshe
,
A.
, 2006, “
Current Displacement (I-Z) Spectroscopy-Based Characterization of Nanoscale Electro Machining (Nano-EM) Tools
,”
Proc. Inst. Mech. Eng., Part N: J. Nanoengineering and Nanosystems
,
220
(
1
), pp.
21
27
.
20.
Ritow
,
H.
, 1959, “
The Role of Space Charge in Gas Break-Through Between Equal Parallel Plane Electrodes Below the Paschen PD Minimum
,”
J. Electron. Control
0368-1947,
7
(
5
), pp.
423
438
.
21.
Schaffert
,
R. M.
, 1962, “
Charge Transport Mechanisms in the Transfer of Latent Electrostatic Images to Dielectric Surfaces
,”
IBM J. Res. Dev.
0018-8646,
6
(
2
), pp.
192
199
.
22.
Katsuyuki
,
O.
,
Koji
,
K.
,
Shojiro
,
K.
, and
Seiichiro
,
M.
, 2001, “
Raman and EELS Studies on Nanocrystalline Diamond Prepared in a Low Pressure Inductively Coupled Plasma
,”
Materials Research Society Proceedings, 2001 Spring Symposium
.
23.
Denat
,
A.
,
Goose
,
J. P.
, and
Goose
,
B.
, 1988, “
Electrical Conduction of Purified Cyclohexane in a Divergent Electric Field
,”
IEEE Trans. Electr. Insul.
0018-9367,
23
(
4
), pp.
545
554
.
24.
Gomer
,
R.
, 1992,
Field Emission and Field Ionization
,
American Institute of Physics
,
Woodbury, NY
.
25.
Rajurkar
,
K. P.
,
Levy
,
G.
,
Malshe
,
A. P.
,
Sundaram
,
M. M.
,
McGeough
,
J.
,
De-Silva
,
A.
,
Hu
,
X.
, and
Resnick
,
R.
, 2006, “
Micro and Nano Machining by Electro-Physical and Chemical Processes
,”
CIRP Ann.
0007-8506,
55
(
2
), pp.
643
666
.
26.
Fleischer
,
J.
,
Masuzawa
,
T.
,
Schmidt
,
J.
, and
Knoll
,
M.
, 2004, “
New Applications for Micro-EDM
,”
J. Mater. Process. Technol.
0924-0136,
149
(
1–3
), pp.
246
249
.
27.
Mayer
,
T. M.
,
Houston
,
J. E.
,
Franklin
,
G. E.
,
Erchak
,
A. A.
, and
Michalske
,
T. A.
, 1999, “
Electric Field Induced Surface Modification of Au
,”
J. Appl. Phys.
0021-8979,
85
(
12
), pp.
8170
8177
.
28.
Virwani
,
K. R.
,
Malshe
,
A. P.
, and
Rajurkar
,
K. P.
, 2010,
Nanoscale Electromachining: Towards the Development of an Electric Discharge Based Machining System at the Nanoscale
,
American Scientific
,
Stevenson Ranch, CA
.
29.
Jinesh
,
K. B.
, and
Frenken
,
J. W. M.
, 2006, “
Capillary Condensation in Atomic Scale Friction: How Water Acts Like a Glue
,”
Phys. Rev. Lett.
0031-9007,
96
(
16
), p.
166103
.
30.
Kuskova
,
N. I.
,
Tkachenko
,
S. I.
, and
Koval
,
S. V.
, 1998, “
Investigation of the Heating Dynamics and Properties of Liquid Tungsten
,”
Int. J. Thermophys.
0195-928X,
19
(
1
), pp.
341
345
.
31.
Cerrato
,
Y.
,
Gutierrez
,
J.
, and
Ramos
,
M.
, 1989, “
Mathematical Study of the Solutions of a Diffusion Equation With Exponential Diffusion Coefficient: Explicit Self-Similar Solutions to Some Boundary Value Problems
,”
J. Phys. A
0305-4470,
22
(
4
), pp.
419
431
.
32.
Fischer
,
L. R.
, and
Israelachvili
,
J. N.
, 1979, “
Direct Experimental Verification of the Kelvin Equation for Capillary Condensation
,”
Nature (London)
0028-0836,
277
, pp.
548
549
.
33.
Chen
,
Y.
,
Wetzel
,
T.
,
Aranovich
,
G. L.
, and
Donohue
,
M. D.
, 2006, “
Generalization of Kelvin’s Equation for Compressible Liquids in Nanoconfinement
,”
J. Colloid Interface Sci.
0021-9797,
300
, pp.
45
51
.
34.
Aranovich
,
G.
, and
Donohue
,
M.
, 2003, “
Adsorption Compression: An Important New Aspect of Adsorption Behavior and Capillarity
,”
Langmuir
0743-7463,
19
(
7
), pp.
2722
2735
.
35.
Christenson
,
H.
, 1988, “
Adhesion Between Surfaces in Undersaturated Vapors-A Reexamination of the Influence of Meniscus Curvature and Surface Forces
,”
J. Colloid Interface Sci.
0021-9797,
121
(
1
), pp.
170
178
.
You do not currently have access to this content.