The development of manufacturing tools and processes capable of precisely positioning and manipulating nanoscale components and materials is still in its embryonic stage. Microactuators are emerging as important tools capable of precisely positioning and manipulating nanoscale components and materials. This paper provides a summary of the state-of-the-art in the design, fabrication, and application of microactuators for nanoscale manufacturing and assembly. Key characteristics and design models of electrothermal and electrostatic microactuators are described and compared. Specific design requirements for their functionality at the nanoscale are discussed. The results demonstrate the limitations of existing microactuator designs and key challenges associated with their design, modeling, and performance characterization for nanoscale positioning, assembly, and manipulation.

1.
Fedder
,
G. K.
, 2003, “
MEMS Fabrication
,”
Proceedings of the 33rd International Test Conference
, pp.
691
698
.
2.
Sardan
,
O.
,
Eichhorn
,
V.
,
Petersen
,
D. H.
,
Fatikow
,
S.
,
Sigmund
,
O.
, and
Boggild
,
P.
, 2008, “
Rapid Prototyping of Nanotube-Based Devices Using Topology-Optimized Microgrippers
,”
Nanotechnology
0957-4484,
19
(
49
), p.
495503
.
3.
Kimberly
,
T.
,
Matthew
,
E.
,
Aaron
,
G.
,
George
,
S.
, and
Phil
,
F.
, 2004, “
FIB Prepared TEM Sample Lift-Out Using MEMS Grippers
,”
Microsc. Microanal.
1431-9276,
10
, (S02), pp.
1144
1145
.
4.
Chronis
,
N.
, and
Lee
,
L. P.
, 2005, “
Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution
,”
J. Microelectromech. Syst.
1057-7157,
14
(
4
), pp.
857
863
.
5.
Kim
,
K.
,
Liu
,
X.
,
Zhang
,
Y.
, and
Sun
,
Y.
, 2008, “
Nanonewton Force-Controlled Manipulation of Biological Cells Using a Monolithic MEMS Microgripper With Two-Axis Force Feedback
,”
J. Micromech. Microeng.
0960-1317,
18
(
5
), p.
055013
.
6.
Requicha
,
A. A. G.
, 2003, “
Nanorobots, NEMS, and Nanoassembly
,”
Proc. IEEE
0018-9219,
9
, pp.
1922
1933
.
7.
Devasia
,
S.
,
Eleftheriou
,
E.
, and
Moheimani
,
S. O. R.
, 2007, “
A Survey of Control Issues in Nanopositioning
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
5
), pp.
802
823
.
8.
Haliyo
,
D. S.
,
Regnier
,
S.
, and
Guinot
,
J. -C.
, 2003, “
[mü]MAD, the Adhesion Based Dynamic Micro-Manipulator
,”
Eur. J. Mech. A/Solids
0997-7538,
22
(
6
), pp.
903
916
.
9.
Li
,
J.
,
Liu
,
A. Q.
, and
Zhang
,
Q. X.
, 2006, “
Tolerance Analysis for Comb-Drive Actuator Using DRIE Fabrication
,”
Sens. Actuators, A
0924-4247,
125
(
2
), pp.
494
503
.
10.
Chen
,
B.
, and
Miao
,
J.
, 2007, “
Influence of Deep RIE Tolerances on Comb-Drive Actuator Performance
,”
J. Phys. D: Appl. Phys.
0022-3727,
40
(
4
), pp.
970
976
.
11.
Jungen
,
A.
,
Pfenninger
,
M.
,
Tonteling
,
M.
,
Stampfer
,
C.
, and
Hierold
,
C.
, 2006, “
Electrothermal Effects at the Microscale and Their Consequences on System Design
,”
J. Micromech. Microeng.
0960-1317,
16
(
8
), pp.
1633
1638
.
12.
Ozsun
,
O.
,
Alaca
,
B. E.
,
Yalcinkaya
,
A. D.
,
Yilmaz
,
M.
,
Zervas
,
M.
, and
Leblebici
,
Y.
, 2009, “
On Heat Transfer at Microscale With Implications for Microactuator Design
,”
J. Micromech. Microeng.
0960-1317,
19
(
4
), p.
045020
.
13.
Kiuchi
,
M.
,
Matsui
,
S.
, and
Isono
,
Y.
, 2007, “
Mechanical Characteristics of FIB Deposited Carbon Nanowires Using an Electrostatic Actuated Nano Tensile Testing Device
,”
J. Microelectromech. Syst.
1057-7157,
16
(
2
), pp.
191
201
.
14.
Zhu
,
Y.
,
Corigliano
,
A.
, and
Espinosa
,
H. D.
, 2006, “
A Thermal Actuator for Nanoscale In Situ Microscopy Testing: Design and Characterization
,”
J. Micromech. Microeng.
0960-1317,
16
(
2
), pp.
242
253
.
15.
Haque
,
M. A.
, 2005, “
In Situ Tensile Testing of Nanoscale Freestanding Thin Films Inside a Transmission Electron Microscope
,”
J. Mater. Res.
0884-2914,
20
(
7
), pp.
1769
1777
.
16.
Haque
,
M. A.
, and
Saif
,
M. T. A.
, 2002, “
Application of MEMS Force Sensors for In Situ Mechanical Characterization of Nano-Scale Thin films in SEM and TEM
,”
Sens. Actuators, A
0924-4247,
97–98
, pp.
239
245
.
17.
Wilson
,
N. R.
, and
Macpherson
,
J. V.
, 2009, “
Carbon Nanotube Tips for Atomic Force Microscopy
,”
Nat. Nanotechnol.
1748-3387,
4
(
8
), pp.
483
491
.
18.
Piner
,
R. D.
,
Zhu
,
J.
,
Xu
,
F.
,
Hong
,
S.
, and
Mirkin
,
C. A.
, 1999, “
Dip-Pen Nanolithography
,”
Science
0036-8075,
283
, pp.
661
663
.
19.
Bullen
,
D.
,
Wang
,
X.
,
Zou
,
J.
,
Chung
,
S.
,
Mirkin
,
C. A.
, and
Liu
,
C.
, 2004, “
Design, Fabrication, and Characterization of Thermally Actuated Probe Arrays for Dip Pen Nanolithography
,”
J. Microelectromech. Syst.
1057-7157,
13
(
4
), pp.
594
602
.
20.
Bullen
,
D.
, and
Liu
,
C.
, 2006, “
Electrostatically Actuated Dip Pen Nanolithography Probe Arrays
,”
Sens. Actuators, A
0924-4247,
125
(
2
), pp.
504
511
.
21.
Salaita
,
K.
,
Wang
,
Y.
, and
Mirkin
,
C. A.
, 2007, “
Applications of Dip-Pen Nanolithography
,”
Nat. Nanotechnol.
1748-3387,
2
(
3
), pp.
145
155
.
22.
Bullen
,
D.
,
Chung
,
S. W.
,
Wang
,
X.
,
Zou
,
J.
, and
Mirkin
,
C. A.
, 2004, “
Parallel Dip-Pen Nanolithography With Arrays of Individually Addressable Cantilevers
,”
Appl. Phys. Lett.
0003-6951,
84
(
5
), pp.
789
791
.
23.
Li
,
S.
,
Liu
,
C.
, and
Wang
,
X.
, 2006, “
Multifunctional Probe Array and Local Vapor Inking Chip for Scanning Probe Nanolithography
,”
Sixth IEEE Conference on Nanotechnology, IEEE-NANO 2006
, Vol.
2
, pp.
551
554
.
24.
Wang
,
X.
,
Bullen
,
D.
,
Zou
,
J.
,
Liu
,
C.
, and
Mirkin
,
C. A.
, 2004, “
Thermally Actuated Probe Array for Parallel Dip-Pen Nanolithography
,”
J. Vac. Sci. Technol. B
1071-1023,
22
, pp.
2563
2567
.
25.
Salaita
,
K.
,
Wang
,
J.
,
Fragala
,
J.
,
Vega
,
R. A.
,
Liu
,
A. Q.
, and
Mirkin
,
C. A.
, 2006, “
Massively Parallel Dip-Pen Nanolithography With 55 000-Pen Two-Dimensional Arrays
,”
Angew. Chem., Int. Ed.
1433-7851,
45
(
43
), pp.
7220
7223
.
26.
Dario
,
P.
,
Carrozza
,
M. C.
,
Benvenuto
,
A.
, and
Menciassi
,
A.
, 2000, “
Micro-Systems in Biomedical Applications
,”
J. Micromech. Microeng.
0960-1317,
10
(
2
), pp.
235
244
.
27.
Du
,
S. E.
,
Cui
,
H.
, and
Zhu
,
Z.
, 2006, “
Review of Nanomanipulators for Nanomanufacturing
,”
International Journal of Nanomanufacturing
,
1
(
1
), pp.
83
104
.
28.
Shibata
,
T.
,
Yamanaka
,
S.
,
Kato
,
N.
,
Kawashima
,
T.
,
Nomura
,
M.
,
Mineta
,
T.
, and
Makino
,
E.
, 2009, “
Fabrication of Micromanipulator Array for Cell Patterning
,”
Microelectron. Eng.
0167-9317,
86
(
4–6
), pp.
1439
1442
.
29.
Alonso
,
J. L.
, and
Goldmann
,
W. H.
, 2003, “
Feeling the Forces: Atomic Force Microscopy in Cell Biology
,”
Life Sci.
0024-3205,
72
(
23
), pp.
2553
2560
.
30.
Fatikow
,
S.
, and
Eichhorn
,
V.
, 2008, “
Nanohandling Automation: Trends and Current Developments
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
222
(
7
), pp.
1353
1369
.
31.
De Vries
,
A. H. B.
,
Krenn
,
B. E.
,
Van Driel
,
R.
, and
Kanger
,
J. S.
, 2005, “
Micro Magnetic Tweezers for Nanomanipulation Inside Live Cells
,”
Biophys. J.
0006-3495,
88
(
3
), pp.
2137
2144
.
32.
Inoue
,
K.
,
Tanikawa
,
T.
, and
Arai
,
T.
, 2008, “
Micro-Manipulation System With a Two-Fingered Micro-Hand and Its Potential Application in Bioscience
,”
J. Biotechnol.
0168-1656,
133
(
2
), pp.
219
224
.
33.
Bell
,
D. J.
,
Lu
,
T. J.
,
Fleck
,
N. A.
, and
Spearing
,
S. M.
, 2005, “
MEMS Actuators and Sensors: Observations on Their Performance and Selection for Purpose
,”
J. Micromech. Microeng.
0960-1317,
15
(
7
), pp.
S153
S164
.
34.
Hubbard
,
N. B.
,
Culpepper
,
M. L.
, and
Howell
,
L. L.
, 2006, “
Actuators for Micropositioners and Nanopositioners
,”
Appl. Mech. Rev.
0003-6900,
59
(
6
), pp.
324
334
.
35.
Leang
,
K. K.
,
Zou
,
Q.
, and
Devasia
,
S.
, 2009, “
Feedforward Control of Piezoactuators in Atomic Force Microscope Systems: Inversion-Based Compensation for Dynamics and Hysteresis
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
19
(
1
), pp.
70
82
.
36.
Muralt
,
P.
, 2008, “
Recent Progress in Materials Issues for Piezoelectric MEMS
,”
J. Am. Ceram. Soc.
0002-7820,
91
(
5
), pp.
1385
1396
.
37.
Jeon
,
C. S.
,
Park
,
J. S.
,
Lee
,
S. Y.
, and
Moon
,
C. W.
, 2007, “
Fabrication and Characteristics of Out-of-Plane Piezoelectric Microgrippers Using MEMS Processes
,”
Thin Solid Films
0040-6090,
515
(
12
), pp.
4901
4904
.
38.
Bechtold
,
T.
,
Rudnyi
,
E.
, and
Korvink
,
J.
, 2005, “
Dynamic Electro-Thermal Simulation of Microsystems—A Review
,”
J. Micromech. Microeng.
0960-1317,
15
(
11
), pp.
R17
R31
.
39.
Comtois
,
J. H.
, and
Bright
,
V. M.
, 1997, “
Applications for Surface-Micromachined Polysilicon Thermal Actuators and Arrays
,”
Sens. Actuators, A
0924-4247,
58
(
1
), pp.
19
25
.
40.
Greitmann
,
G.
, and
Buser
,
R. A.
, 1996, “
Tactile Microgripper for Automated Handling of Microparts
,”
Sens. Actuators, A
0924-4247,
53
(
1–3
), pp.
410
415
.
41.
Geisberger
,
A.
, and
Sarkar
,
N.
, 2006,
MEMS/NEMS: Techniques in Microelectrothermal Actuator and Their Applications
,
Springer
,
New York
.
42.
Imamura
,
T.
,
Katayama
,
M.
,
Ikegawa
,
Y.
,
Ohwe
,
T.
,
Koishi
,
R.
, and
Koshikawa
,
T.
, 1998, “
MEMS-Based Integrated Head/Actuator/Slider for Hard Disk Drives
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
3
(
3
), pp.
166
174
.
43.
Andersen
,
K. N.
,
Petersen
,
D. H.
,
Carlson
,
K.
,
Molhave
,
K.
,
Sardan
,
O.
,
Horsewell
,
A.
,
Eichhorn
,
V.
,
Fatikow
,
S.
, and
Boggild
,
P.
, 2009, “
Multimodal Electrothermal Silicon Microgrippers for Nanotube Manipulation
,”
IEEE Trans. Nanotechnol.
1536-125X,
8
(
1
), pp.
76
85
.
44.
Chang
,
J.
,
Min
,
B.
,
Kim
,
J.
, and
Lin
,
L.
, 2009, “
Bimorph Nano Actuators Synthesized by Focused Ion Beam Chemical Vapor Deposition
,”
Microelectron. Eng.
0167-9317,
86
(
11
), pp.
2364
2368
.
45.
Mølhave
,
K.
,
Wich
,
T.
,
Kortschack
,
A.
, and
Bøggild
,
P.
, 2006, “
Pick-and-Place Nanomanipulation Using Microfabricated Grippers
,”
Nanotechnology
0957-4484,
17
(
10
), pp.
2434
2441
.
46.
Petrina
,
A.
, and
Petrin
,
A.
, 2008, “
On the Question of Information Processing in Nanomanipulation Tasks
,”
Automatic Documentation and Mathematical Linguistics
,
42
(
2
), pp.
136
142
.
47.
Mølhave
,
K.
, and
Hansen
,
O.
, 2005, “
Electro-Thermally Actuated Microgrippers With Integrated Force-Feedback
,”
J. Micromech. Microeng.
0960-1317,
15
(
6
), pp.
1265
1270
.
48.
Krecinic
,
F.
,
Duc
,
T. C.
,
Lau
,
G. K.
, and
Sarro
,
P. M.
, 2008, “
Finite Element Modelling and Experimental Characterization of an Electro-Thermally Actuated Silicon-Polymer Microgripper
,”
J. Micromech. Microeng.
0960-1317,
18
(
6
), p.
064007
.
49.
Prasanna
,
S.
, and
Spearing
,
S. M.
, 2007, “
Material Selection and Design of Microelectrothermal Bimaterial Actuators
,”
J. Microelectromech. Syst.
1057-7157,
16
(
2
), pp.
248
259
.
50.
Srikar
,
V. T.
, and
Spearing
,
S. M.
, 2003, “
Materials Selection for Microfabricated Electrostatic Actuators
,”
Sens. Actuators, A
0924-4247,
102
(
3
), pp.
279
285
.
51.
Zhou
,
Q.
,
Chang
,
B.
, and
Koivo
,
H. N.
, 2004, “
Ambient Environmental Effects in Micro/Nano Handling
,”
Fourth International Workshop on Microfactories-IWMF
, Shanghai, China, pp.
146
151
.
52.
Chen
,
S. -C.
, and
Culpepper
,
M. L.
, 2006, “
Design of a Six-Axis Micro-Scale Nanopositioner-[mu]HexFlex
,”
Precis. Eng.
0141-6359,
30
(
3
), pp.
314
324
.
53.
Hikihara
,
T.
, 2009,
Applications of Nonlinear Dynamics: Dynamics in Manipulation and Actuation of Nano-Particles
,
Springer
,
Berlin, Heidelberg
.
54.
Lee
,
C. C.
, and
Hsu
,
W.
, 2003, “
Optimization of an Electro-Thermally and Laterally Driven Microactuator
,”
Microsyst. Technol.
0946-7076,
9
(
5
), pp.
331
334
.
55.
Guckel
,
H.
,
Klein
,
J.
,
Christenson
,
T.
,
Skrobis
,
K.
,
Laudon
,
M.
, and
Lovell
,
E. G.
, 1992, “
Thermo-Magnetic Metal Flexure Actuators
,”
Fifth Technical Digest, IEEE Solid-State Sensor and Actuator Workshop
, pp.
73
75
.
56.
Huang
,
Q.
, and
Lee
,
N. K. S.
, 1999, “
Analysis and Design of Polysilicon Thermal Fexure Actuator
,”
J. Micromech. Microeng.
0960-1317,
9
, pp.
64
70
.
57.
Hickey
,
R.
,
Kujath
,
M.
, and
Hubbard
,
T.
, 2002, “
Heat Transfer Analysis and Optimization of Two-Beam Microelectromechanical Thermal Actuators
,”
J. Vac. Sci. Technol. A
0734-2101,
20
(
3
), pp.
971
974
.
58.
Kolesar
,
E. S.
,
Allen
,
P. B.
,
Howard
,
J. T.
,
Wilken
,
J. M.
, and
Boydston
,
N.
, 1999, “
Thermally-Actuated Cantilever Beam for Schieving Large In-Plane Mechanical Deflections
,”
Thin Solid Films
0040-6090,
355–356
, pp.
295
302
.
59.
Chen
,
R. S.
,
Kung
,
C.
, and
Lee
,
G. -B.
, 2002, “
Analysis of the Optimal Dimension on the Electrothermal Microactuator
,”
J. Micromech. Microeng.
0960-1317,
12
(
3
), pp.
291
296
.
60.
Lee
,
J. -S.
,
Park
,
D. S.-W.
,
Nallani
,
A. K.
,
Lee
,
G. -S.
, and
Lee
,
J. -B.
, 2005, “
Sub-Micron Metallic Electrothermal Actuators
,”
J. Micromech. Microeng.
0960-1317,
15
(
2
), pp.
322
327
.
61.
Kolesar
,
E. S.
,
Ko
,
S. Y.
,
Howard
,
J. T.
,
Allen
,
P. B.
,
Wilken
,
J. M.
,
Boydston
,
N. C.
,
Ruff
,
M. D.
, and
Wilks
,
R. J.
, 2000, “
In-Plane Tip Deflection and Force Achieved With Asymmetrical Polysilicon Electrothermal Microactuators
,”
Thin Solid Films
0040-6090,
377–378
, pp.
719
726
.
62.
Moulton
,
T.
, and
Ananthasuresh
,
G.
, 2001, “
Micromechanical Devices With Embedded Electro-Thermal Compliant Actuation
,”
Sens. Actuators, A
0924-4247,
90
(
1–2
), pp.
38
48
.
63.
Yan
,
D.
,
Khajepour
,
A.
, and
Mansour
,
R.
, 2003, “
Modeling of Two-Hot-Arm Horizontal Thermal Actuator
,”
J. Micromech. Microeng.
0960-1317,
13
(
2
), pp.
312
322
.
64.
Li
,
L.
, and
Uttamchandani
,
D.
, 2004, “
Modified Asymmetric Micro-Electrothermal Actuator: Analysis and Experimentation
,”
J. Micromech. Microeng.
0960-1317,
14
(
12
), pp.
1734
1741
.
65.
Henneken
,
V. A.
,
Tichem
,
M.
, and
Sarro
,
P. M.
, 2008, “
Improved Thermal U-Beam Actuators for Micro-Assembly
,”
Sens. Actuators, A
0924-4247,
142
(
1
), pp.
298
305
.
66.
Tsai
,
L. -N.
,
Shen
,
G. -R.
,
Cheng
,
Y. -T.
, and
Hsu
,
W.
, 2006, “
Performance Improvement of an Electrothermal Microactuator Fabricated Using Ni-Diamond Nanocomposite
,”
J. Microelectromech. Syst.
1057-7157,
15
(
1
), pp.
149
158
.
67.
Carlson
,
K.
,
Andersen
,
K. N.
,
Eichhorn
,
V.
,
Petersen
,
D. H.
,
Molhave
,
K.
,
Bu
,
I. Y. Y.
,
Teo
,
K. B. K.
,
Milne
,
W. I.
,
Fatikow
,
S.
, and
Boggild
,
P.
, 2007, “
A Carbon Nanofibre Scanning Probe Assembled Using an Electrothermal Microgripper
,”
Nanotechnology
0957-4484,
18
(
34
), p.
345501
.
68.
Atre
,
A.
, 2006, “
Analysis of Out-of-Plane Thermal Microactuators
,”
J. Micromech. Microeng.
0960-1317,
16
(
2
), pp.
205
213
.
69.
Yan
,
D.
,
Khajepour
,
A.
, and
Mansour
,
R.
, 2004, “
Design and Modeling of a MEMS Bidirectional Vertical Thermal Actuator
,”
J. Micromech. Microeng.
0960-1317,
14
(
7
), pp.
841
850
.
70.
Elbuken
,
C.
,
Topaloglu
,
N.
,
Nieva
,
P.
,
Yavuz
,
M.
, and
Huissoon
,
J.
, 2009, “
Modeling and Analysis of a 2-DOF Bidirectional Electro-Thermal Microactuator
,”
Microsyst. Technol.
0946-7076,
15
(
5
), pp.
713
722
.
71.
Chen
,
S. C.
, and
Culpepper
,
M. L.
, 2006, “
Design of Contoured Microscale Thermomechanical Actuators
,”
J. Microelectromech. Syst.
1057-7157,
15
(
5
), pp.
1226
1234
.
72.
Dan
,
Z.
,
Guifu
,
D.
,
Lida
,
Z.
, and
Jifeng
,
C.
, 2008,
“An Out-of-Plane Electro-Thermal Polymer Actuator
,”
Proceedings of the Third IEEE International Conference on Nano/Micro Engineered and Molecular Systems
, Sanya, China, pp.
647
650
.
73.
Popa
,
D. O.
,
Kang
,
B. H.
,
Wen
,
J. T.
,
Stephanou
,
H. E.
,
Skidmore
,
G.
, and
Geisberger
,
A.
, 2003, “
Dynamic Modeling and Input Shaping of Thermal Bimorph MEMS Actuators
,”
Proceedings of the ICRA’03 IEEE International Conference on Robotics and Automation
, Taipei, Taiwan, Vol.
1
, pp.
1470
1475
.
74.
Ouyang
,
P.
,
Tjiptoprodjo
,
R.
,
Zhang
,
W.
, and
Yang
,
G.
, 2008, “
Micro-Motion Devices Technology: The State of Arts Review
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
38
(
5–6
), pp.
463
478
.
75.
Ananthasuresh
,
G. K.
, and
Howell
,
L. L.
, 2005, “
Mechanical Design of Compliant Microsystems—A Perspective and Prospects
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
736
738
.
76.
Tsai
,
Y. -C.
,
Lei
,
S. H.
, and
Sudin
,
H.
, 2005, “
Design and Analysis of Planar Compliant Microgripper Based on Kinematic Approach
,”
J. Micromech. Microeng.
0960-1317,
15
(
1
), pp.
143
156
.
77.
Jonsmann
,
J.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
, 1999, “
Compliant Electro-thermal Microactuators
,”
12th IEEE International Conference on Micro Electro Mechanical Systems
, pp.
588
593
.
78.
Sigmund
,
O.
, 2001, “
Design of Multiphysics Actuators Using Topology Optimization—Part I: One-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
49–50
), pp.
6577
6604
.
79.
Sardan
,
O.
,
Petersen
,
D. H.
,
Mølhave
,
K.
,
Sigmund
,
O.
, and
Bøggild
,
P.
, 2008, “
Topology Optimized Electrothermal Polysilicon Microgrippers
,”
Microelectron. Eng.
0167-9317,
85
(
5–6
), pp.
1096
1099
.
80.
Rubio
,
W. M.
,
Silva
,
E. C. N.
,
Bordatchev
,
E. V.
, and
Zeman
,
M. J. F.
, 2008, “
Topology Optimized Design, Microfabrication and Characterization of Electro-Thermally Driven Microgripper
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
20
(
6
), pp.
669
681
.
81.
Sardan
,
O.
,
Petersen
,
D. H.
,
Sigmund
,
O.
, and
Boggild
,
P.
, 2008, “
Simulation of Topology Optimized Electrothermal Microgrippers
,”
COMSOL Conference
, Hannover, Germany pp.
1
20
.
82.
Nguyen
,
N. -T.
,
Ho
,
S. -S.
, and
Low
,
C. L.-N.
, 2004, “
A Polymeric Microgripper With Integrated Thermal Actuators
,”
J. Micromech. Microeng.
0960-1317,
14
(
7
), pp.
969
974
.
83.
Solano
,
B.
, and
Wood
,
D.
, 2007, “
Design and Testing of a Polymeric Microgripper for Cell Manipulation
,”
Microelectron. Eng.
0167-9317,
84
(
5–8
), pp.
1219
1222
.
84.
Duc
,
T. C.
,
Lau
,
G. -K.
, and
Sarro
,
P. M.
, 2008, “
Polymeric Thermal Microactuator With Embedded Silicon Skeleton: Part II—Fabrication, Characterization, and Application for 2-DOF Microgripper
,”
J. Microelectromech. Syst.
1057-7157,
17
(
4
), pp.
823
831
.
85.
Lau
,
E. K.
,
Goosen
,
J. F. L.
,
Van Keulen
,
F.
,
Duc
,
T. C.
, and
Sarro
,
P. M.
, 2008, “
Polymeric Thermal Microactuator With Embedded Silicon Skeleton: Part I—Design and Analysis
,”
J. Microelectromech. Syst.
1057-7157,
17
(
4
), pp.
809
822
.
86.
Elata
,
D.
, and
Leus
,
V.
, 2005, “
How Slender Can Comb-Drive Fingers Be?
,”
J. Micromech. Microeng.
0960-1317,
15
(
5
), pp.
1055
1059
.
87.
Zhou
,
G.
, and
Dowd
,
P.
, 2003, “
Tilted Folded-Beam Suspension for Extending the Stable Travel Range of Comb-Drive Actuators
,”
J. Micromech. Microeng.
0960-1317,
13
(
2
), pp.
178
183
.
88.
Hirano
,
T.
,
Furuhata
,
T.
,
Gabriel
,
K. J.
, and
Fujita
,
H.
, 1992, “
Design, Fabrication, and Operation of Submicron Gap Comb-Drive Microactuators
,”
J. Microelectromech. Syst.
1057-7157,
1
(
1
), pp.
52
59
.
89.
Hou
,
M. T.-K.
,
Huang
,
G. K.-W.
,
Huang
,
J. -Y.
,
Liao
,
K. -M.
,
Chen
,
R.
, and
Yeh
,
J. -L. A.
, 2006, “
Extending Displacements of Comb Drive Actuators by Adding Secondary Comb Electrodes
,”
J. Micromech. Microeng.
0960-1317,
16
(
4
), pp.
684
691
.
90.
Chen
,
C.
, and
Lee
,
C.
, 2004, “
Design and Modeling for Comb Drive Actuator With Enlarged Static Displacement
,”
Sens. Actuators, A
0924-4247,
115
(
2–3
), pp.
530
539
.
91.
Legtenberg
,
R.
,
Groeneveld
,
A. W.
, and
Elwenspoek
,
M.
, 1996, “
Comb-Drive Actuators for Large Displacements
,”
J. Micromech. Microeng.
0960-1317,
6
(
3
), pp.
320
329
.
92.
Dai
,
W.
,
Lian
,
K.
, and
Wang
,
W.
, 2007, “
Design and Fabrication of a SU-8 Based Electrostatic Microactuator
,”
Microsyst. Technol.
0946-7076,
13
(
3–4
), pp.
271
277
.
93.
Grade
,
J. D.
,
Jerman
,
H.
, and
Kenny
,
T. W.
, 2003, “
Design of Large Deflection Electrostatic Actuators
,”
J. Microelectromech. Syst.
1057-7157,
12
(
3
), pp.
335
343
.
94.
Ye
,
W.
, and
Mukherjee
,
S.
, 1999, “
Optimal Shape Design of Three-Dimensional MEMS With Applications to Electrostatic Comb Drives
,”
Int. J. Numer. Methods Eng.
0029-5981,
45
(
2
), pp.
175
194
.
95.
Sun
,
L.
,
Wang
,
J.
,
Rong
,
W.
,
Li
,
X.
, and
Bao
,
H.
, 2008, “
A Silicon Integrated Micro Nano-Positioning XY-Stage for Nano-Manipulation
,”
J. Micromech. Microeng.
0960-1317,
18
(
12
), p.
125004
.
96.
Chiou
,
J. -C.
,
Lin
,
Y. -J.
, and
Kuo
,
C. -F.
, 2008, “
Extending the Traveling Range With a Cascade Electrostatic Comb-Drive Actuator
,”
J. Micromech. Microeng.
0960-1317,
18
(
1
), p.
015018
.
97.
Liu
,
X.
,
Kim
,
K.
, and
Sun
,
Y.
, 2007, “
A MEMS Stage for 3-Axis Nanopositioning
,”
J. Micromech. Microeng.
0960-1317,
17
(
9
), pp.
1796
1802
.
98.
Gu
,
L.
,
Li
,
X.
,
Bao
,
H.
,
Liu
,
B.
,
Wang
,
Y.
,
Liu
,
M.
,
Yang
,
Z.
, and
Cheng
,
B.
, 2006, “
Single-Wafer-Processed Nano-Positioning XY-stages With Trench-Sidewall Micromachining Technology
,”
J. Micromech. Microeng.
0960-1317,
16
(
7
), pp.
1349
1357
.
99.
Dong
,
J.
,
Mukhopadhyay
,
D.
, and
Ferreira
,
P. M.
, 2007, “
Design, Fabrication and Testing of a Silicon-on-Insulator (SOI) MEMS Parallel Kinematics XY Stage
,”
J. Micromech. Microeng.
0960-1317,
17
(
6
), pp.
1154
1161
.
100.
Mukhopadhyay
,
D.
,
Dong
,
J.
,
Pengwang
,
E.
, and
Ferreira
,
P.
, 2008, “
A SOI-MEMS-Based 3-DOF Planar Parallel-Kinematics Nanopositioning Stage
,”
Sens. Actuators, A
0924-4247,
147
(
1
), pp.
340
351
.
101.
Yao
,
Q.
,
Dong
,
J.
, and
Ferreira
,
P. M.
, 2008, “
A Novel Parallel-Kinematics Mechanisms for Integrated, Multi-Axis Nanopositioning: Part 1. Kinematics and Design for Fabrication
,”
Precis. Eng.
0141-6359,
32
(
1
), pp.
7
19
.
102.
Liu
,
X.
,
Tong
,
J.
, and
Sun
,
Y.
, 2007, “
A Millimeter-Sized Nanomanipulator With Sub-Nanometer Positioning Resolution and Large Force Output
,”
Smart Mater. Struct.
0964-1726,
16
(
5
), pp.
1742
1750
.
103.
Volland
,
B. E.
,
Heerlein
,
H.
, and
Rangelow
,
I. W.
, 2002, “
Electrostatically Driven Microgripper
,”
Microelectron. Eng.
0167-9317,
61–62
, pp.
1015
1023
.
104.
Chang
,
H. -C.
,
Tsai
,
J. M.-L.
,
Tsai
,
H. -C.
, and
Fang
,
W.
, 2006, “
Design, Fabrication, and Testing of a 3-DOF HARM Micromanipulator on (1 1 1) Silicon Substrate
,”
Sens. Actuators, A
0924-4247,
125
(
2
), pp.
438
445
.
105.
Beyeler
,
F.
,
Neild
,
A.
,
Oberti
,
S.
,
Bell
,
D. J.
, and
Sun
,
Y.
, 2007, “
Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic field
,”
J. Microelectromech. Syst.
1057-7157,
16
(
1
), pp.
7
15
.
106.
Qiao
,
D. -Y.
,
Yuan
,
W. -Z.
, and
Li
,
X. -Y.
, 2007, “
A Two-Beam Method for Extending the Working Range of Electrostatic Parallel-Plate Micro-Actuators
,”
J. Electrost.
0304-3886,
65
(
4
), pp.
256
262
.
107.
Hung
,
E. S.
, and
Senturia
,
S. D.
, 1999, “
Extending the Travel Range of Analog-Tuned Electrostatic Actuators
,”
J. Microelectromech. Syst.
1057-7157,
8
(
4
), pp.
497
505
.
108.
Chan
,
E. K.
, and
Dutton
,
R. W.
, 2000, “
Electrostatic Micromechanical Actuator With Extended Range of Travel
,”
J. Microelectromech. Syst.
1057-7157,
9
(
3
), pp.
321
328
.
109.
Castañer
,
L.
,
Pons
,
J.
,
Nadal-Guardia
,
R.
, and
Rodríguez
,
A.
, 2001, “
Analysis of the Extended Operation Range of Electrostatic Actuators by Current-Pulse Drive
,”
Sens. Actuators, A
0924-4247,
90
(
3
), pp.
181
190
.
110.
Rocha
,
L. A.
,
Cretu
,
E.
, and
Wolffenbuttel
,
R. F.
, 2006, “
Using Dynamic Voltage Drive in a Parallel-Plate Electrostatic Actuator for Full-Gap Travel Range and Positioning
,”
J. Microelectromech. Syst.
1057-7157,
15
(
1
), pp.
69
83
.
111.
Li
,
L.
,
Brown
,
J. G.
, and
Uttamchandani
,
D.
, 2002, “
Study of Scratch Drive Actuator Force Characteristics
,”
J. Micromech. Microeng.
0960-1317,
12
(
6
), pp.
736
741
.
112.
Kanamori
,
Y.
,
Yahagi
,
H.
, and
Hane
,
K.
, 2006, “
A Microtranslation Table With Scratch-Drive Atuators Fabricated From Silicon-on-Insulator Wafer
,”
Sens. Actuators, A
0924-4247,
125
(
2
), pp.
451
457
.
113.
Kuang
,
Y.
,
Huang
,
Q. A.
, and
Lee
,
N. K. S.
, 2002, “
Numerical Simulation of a Polysilicon Thermal Flexure Actuator
,”
Microsyst. Technol.
0946-7076,
8
(
1
), pp.
17
21
.
114.
Li
,
R.
,
Huang
,
Q. -A.
, and
Li
,
W.
, 2009, “
A Nodal Analysis Model for the Out-of-Plane Beamshape Electrothermal Microactuator
,”
Microsyst. Technol.
0946-7076,
15
(
2
), pp.
217
225
.
115.
Enikov
,
E. T.
,
Kedar
,
S. S.
, and
Lazarov
,
K. V.
, 2005, “
Analytical Model for Analysis and Design of V-Shaped Thermal Microactuators
,”
J. Microelectromech. Syst.
1057-7157,
14
(
4
), pp.
788
798
.
116.
Lin
,
L.
, and
Chiao
,
M.
, 1996, “
Electrothermal Responses of Lineshape Microstructures
,”
Sens. Actuators, A
0924-4247,
55
(
1
), pp.
35
41
.
117.
Mayyas
,
M.
, and
Stephanou
,
H.
, 2009, “
Electrothermoelastic Modeling of MEMS Gripper
,”
Microsyst. Technol.
0946-7076,
15
(
4
), pp.
637
646
.
118.
Hickey
,
R.
,
Sameoto
,
D.
,
Hubbard
,
T.
, and
Kujath
,
M.
, 2003, “
Time and Frequency Response of Two-Arm Micromachined Thermal Actuators
,”
J. Micromech. Microeng.
0960-1317,
13
(
1
), pp.
40
46
.
119.
Geisberger
,
A. A.
,
Sarkar
,
N.
,
Ellis
,
M.
, and
Skidmore
,
G. D.
, 2003, “
Electrothermal Properties and Modeling of Polysilicon Microthermal Actuators
,”
J. Microelectromech. Syst.
1057-7157,
12
(
4
), pp.
513
523
.
120.
Liu
,
C.
, 2006,
Foundations of MEMS
,
Pearson/Prentice-Hall
,
Upper Saddle River, NJ
.
121.
Atre
,
A.
, 2007, “
Effect of Shape Factors and Material Property Variations on Modeling the Response of Thermal Microactuators
,”
Sens. Actuators, A
0924-4247,
134
(
1
), pp.
69
76
.
122.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2001, “
Comprehensive Thermal Modelling and Characterization of an Electro-Thermal-Compliant Microactuator
,”
J. Micromech. Microeng.
0960-1317,
11
(
5
), pp.
452
462
.
123.
Mills
,
A.
, 1999,
Basic Heat and Mass Transfer
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
124.
Atre
,
A.
, and
Boedo
,
S.
, 2004, “
Effect of Thermophysical Property Variations on Surface Micromachined Polysilicon Beam Flexure Actuators
,”
Proceedings of the Modeling and Simulation of Microsystems
, NSTI-Nanotech 2004, Vol.
2
, pp.
263
267
.
125.
Sundararajan
,
S.
, and
Bhushan
,
B.
, 2002, “
Development of AFM-based Techniques to Measure Mechanical Properties of Nanoscale Structures
,”
Sens. Actuators, A
0924-4247,
101
(
3
), pp.
338
351
.
126.
Godoy
,
P. H. D.
, and
Silva
,
E. C. N.
, 2007, “
Aspects of Fabrication and Characterization of Electro-Thermal Microactuators
,”
J. Braz. Soc. Mech. Sci.
0100-7386,
29
(
1
), pp.
26
33
.
127.
Lee
,
K. B.
,
Pisano
,
A. P.
, and
Lin
,
L.
, 2007, “
Nonlinear Behaviors of a Comb Drive Actuator Under Electrically Induced Tensile and Compressive Stresses
,”
J. Micromech. Microeng.
0960-1317,
17
(
3
), pp.
557
566
.
128.
Leus
,
V.
, and
Elata
,
D.
, 2004, “
Fringing Field Effect in Electrostatic Actuators
,” Technion-Israel Institute of Technology Technical Report No. ETR-2004-2.
129.
Zhu
,
G.
,
Penet
,
J.
, and
Saydy
,
L.
, 2007, “
Modeling and Control of Electrostatically Actuated MEMS in the Presence of Parasitics and Parametric Uncertainties
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
129
(
6
), pp.
786
794
.
130.
Elata
,
D.
, and
Bamberger
,
H.
, 2006, “
On the Dynamic Pull-in of Electrostatic Actuators With Multiple Degrees of Freedom and Multiple Voltage Sources
,”
J. Microelectromech. Syst.
1057-7157,
15
(
1
), pp.
131
140
.
131.
Lin
,
W. -H.
, and
Zhao
,
Y. -P.
, 2005, “
Nonlinear Behavior for Nanoscale Electrostatic Actuators With Casimir Force
,”
Chaos, Solitons Fractals
0960-0779,
23
(
5
), pp.
1777
1785
.
132.
Qinghua
,
L.
,
Yanbin
,
F.
, and
Xianmin
,
Z.
, 2008, “
In-Plane Micro-Motion Measurement With High Accuracy Based on Computer Microvision
,”
Seventh World Congress on Intelligent Control and Automation, WCICA 2008
, pp.
2365
2370
.
133.
Zhong
,
Y.
,
Zhang
,
G.
,
Leng
,
C.
, and
Zhang
,
T.
, 2007, “
A Differential Laser Doppler System for One-Dimensional In-Plane Motion Measurement of MEMS
,”
Measurement
0263-2241,
40
(
6
), pp.
623
627
.
134.
Park
,
H.
,
Kwon
,
S.
, and
Kim
,
S.
, 2009, “
Quantitative Displacement Measurement of a Nanotube Cantilever With Nanometer Accuracy Using Epifluorescence Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
80
(
5
), p.
053703
.
135.
Lai
,
Y.
,
Mcdonald
,
J.
,
Kujath
,
M.
, and
Hubbard
,
T.
, 2004, “
Force, Deflection and Power Measurements of Toggled Microthermal Actuators
,”
J. Micromech. Microeng.
0960-1317,
14
(
1
), pp.
49
56
.
136.
Sun
,
Y.
, and
Nelson
,
B. J.
, 2007, “
MEMS Capacitive Force Sensors for Cellular and Flight Biomechanics
,”
Biomed. Mater.
,
2
(
1
), pp.
S16
S22
.
137.
Wittwer
,
J. W.
,
Baker
,
M. S.
, and
Howell
,
L. L.
, 2006, “
Simulation, Measurement, and Asymmetric Buckling of Thermal Microactuators
,”
Sens. Actuators, A
0924-4247,
128
(
2
), pp.
395
401
.
138.
Tokunaga
,
M.
,
Aoki
,
T.
,
Hiroshima
,
M.
,
Kitamura
,
K.
, and
Yanagida
,
T.
, 1997, “
Subpiconewton Intermolecular Force Microscopy
,”
Biochem. Biophys. Res. Commun.
0006-291X,
231
(
3
), pp.
566
569
.
139.
Teyssieux
,
D.
,
Thiery
,
L.
, and
Cretin
,
B.
, 2007, “
Near-Infrared Thermography Using a Charge-Coupled Device Camera: Application to Microsystems
,”
Rev. Sci. Instrum.
0034-6748,
78
(
3
), p.
034902
.
140.
Kim
,
S. H.
,
Noh
,
J.
,
Jeon
,
M. K.
,
Kim
,
K. W.
,
Lee
,
L. P.
, and
Woo
,
S. I.
, 2006, “
Micro-Raman Thermometry for Measuring the Temperature Distribution Inside the Microchannel of a Polymerase Chain Reaction Chip
,”
J. Micromech. Microeng.
0960-1317,
16
(
3
), pp.
526
530
.
141.
Serrano
,
J. R.
, and
Kearney
,
S. P.
, 2008, “
Time-Resolved Micro-Raman Thermometry for Microsystems in Motion
,”
ASME J. Heat Transfer
0022-1481,
130
(
12
), p.
122401
.
142.
Jalili
,
N.
, and
Laxminarayana
,
K.
, 2004, “
A Review of Atomic Force Microscopy Imaging Systems: Application to Molecular Metrology and Biological Sciences
,”
Mechatronics
0957-4158,
14
(
8
), pp.
907
945
.
143.
Madou
,
M. J.
, 2002,
Fundamentals of Microfabrication: The Science of Miniaturization
,
CRC
,
Boca Raton, FL
.
144.
Judy
,
J. W.
, 2001, “
Microelectromechanical Systems (MEMS): Fabrication, Design and Applications
,”
Smart Mater. Struct.
0964-1726,
10
(
6
), pp.
1115
1134
.
145.
Gad-El-Hak
,
M.
, 2006,
MEMS: Introduction and Fundamentals
,
CRC
,
Boca Raton, FL
/
Taylor & Francis
,
New York
.
146.
Maleville
,
C.
, and
Mazuré
,
C.
, 2004, “
Smart-Cut® Technology: From 300 mm Ultrathin SOI Production to Advanced Engineered Substrates
,”
Solid-State Electron.
0038-1101,
48
(
6
), pp.
1055
1063
.
147.
Chen
,
Y.
, and
Pépin
,
A.
, 2001, “
Nanofabrication: Conventional and Nonconventional Methods
,”
Electrophoresis
0173-0835,
22
(
2
), pp.
187
207
.
148.
Morton
,
K. J.
,
Nieberg
,
G.
,
Bai
,
S.
, and
Chou
,
S. Y.
, 2008, “
Wafer-Scale Patterning of Sub-40 nm Diameter and High Aspect Ratio (>50:1) Silicon Pillar Arrays by Nanoimprint and Etching
,”
Nanotechnology
0957-4484,
19
(
34
), p.
345301
.
149.
Shedd
,
G. M.
, and
Russell
,
P.
, 1990, “
The Scanning Tunneling Microscope as a Tool for Nanofabrication
,”
Nanotechnology
0957-4484,
1
(
1
), pp.
67
80
.
150.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
C.
, 1986, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
0031-9007,
56
(
9
), pp.
930
933
.
151.
Huo
,
F.
,
Zheng
,
Z.
,
Zheng
,
G.
,
Giam
,
L. R.
,
Zhang
,
H.
, and
Mirkin
,
C. A.
, 2008, “
Polymer Pen Lithography
,”
Science
0036-8075,
321
, pp.
1658
1660
.
152.
Cheng
,
C. -H.
,
Chan
,
C. -K.
, and
Lai
,
G. -J.
, 2009, “
Optimal Design of Al/Si Bimorph Electro-Thermal Microactuator by Integrating Finite-Element Code With Optimization Method
,”
Sens. Actuators, A
0924-4247,
151
(
1
), pp.
53
63
.
153.
Choi
,
H. -S.
,
Lee
,
D. -C.
,
Kim
,
S. -S.
, and
Han
,
C. -S.
, 2005, “
The Development of a Microgripper With a Perturbation-Based Configuration Design Method
,”
J. Micromech. Microeng.
0960-1317,
15
(
6
), pp.
1327
1333
.
154.
Wang
,
N. F.
, and
Tai
,
K.
, 2008, “
Design of Grip-and-Move Manipulators Using Symmetric Path Generating Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
130
(
11
), p.
112305
.
155.
Sigmund
,
O.
, 2009, “
Manufacturing Tolerant Topology Optimization
,”
Acta Mech. Sin.
0459-1879,
25
(
2
), pp.
227
239
.
156.
Maute
,
K.
, and
Frangopol
,
D. M.
, 2003, “
Reliability-Based Design of MEMS Mechanisms by Topology Optimization
,”
Comput. Struct.
0045-7949,
81
(
8–11
), pp.
813
824
.
157.
Du
,
Y. -X.
,
Chen
,
L. -P.
,
Tian
,
Q. -H.
, and
Wu
,
Z. -J.
, 2009, “
Topology Synthesis of Thermomechanical Compliant Mechanisms With Geometrical Nonlinearities Using Meshless Method
,”
Adv. Eng. Software
0965-9978,
40
(
5
), pp.
315
322
.
158.
van West
,
E.
,
Yamamoto
,
A.
, and
Higuchi
,
T.
, 2007, “
The Concept of “Haptic Tweezer,” a Non-Contact Object Handling System Using Levitation Techniques and Haptics
,”
Mechatronics
0957-4158,
17
(
7
), pp.
345
356
.
159.
Lyons
,
K.
, and
Postek
,
M.
, 2008, “
Metrology at the Nanoscale: What Are the Grand Challenges?
,”
Proc. SPIE
0277-786X,
7042
, pp.
704202.1
704202.13
.
You do not currently have access to this content.