A laser metal deposition height control methodology is presented in this paper. The height controller utilizes a particle swarm optimization (PSO) algorithm to estimate model parameters between layers using measured temperature and track height profiles. Using the estimated model, the powder flow rate reference profile, which will produce the desired layer height reference, is then generated using iterative learning control (ILC). The model parameter estimation performance using PSO is evaluated using a four-layer single track deposition, and the powder flow rate reference generation performance using ILC is tested using simulation. The results show that PSO and ILC perform well in estimating model parameters and generating powder flow rate references, respectively. The proposed height control methodology is then tested experimentally for tracking a constant height reference with constant traverse speed and constant laser power. The experimental results indicate that the controller performs well in tracking constant height references in comparison with the widely used fixed process parameter strategy. The application of layer-to-layer height control produces more consistent layer height increment and a more precise track height, which saves machining time and increases powder efficiency.

1.
Choi
,
J.
, 2002, “
Process and Prosperities Control in Laser Aided Direct Metal/Materials Deposition Process
,”
Proceedings of IMECE
, New Orleans, LA, Nov. 17–22, pp.
1
9
.
2.
Griffith
,
M. L.
,
Keicher
,
D. M.
,
Atwood
,
C. L.
,
Romero
,
J. A.
,
Smegeresky
,
J. E.
,
Harwell
,
L. D.
, and
Greene
,
D. L.
, 1996, “
Free Form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS)
,”
Solid Freeform Fabrication Symposium
, Austin, TX, pp.
125
131
.
3.
Hua
,
Y.
, and
Choi
,
J.
, 2005, “
Adaptive Direct Metal/Material Deposition Process Using a Fuzzy Logic-Based Controller
,”
J. Laser Appl.
1042-346X,
17
(
4
), pp.
200
210
.
4.
Choi
,
J.
, and
Chang
,
Y.
, 2006, “
Analysis of Laser Control Effects for Direct Metal Deposition Process
,”
J. Mech. Sci. Technol.
1738-494X,
20
(
10
), pp.
1680
1690
.
5.
Mazumder
,
J.
,
Schifferer
,
A.
, and
Choi
,
J.
, 1999, “
Direct Materials Deposition: Designed Macro and Microstructure
,”
Mater. Res. Innovations
1432-8917,
3
(
3
), pp.
118
131
.
6.
Fathi
,
A.
,
Khajepour
,
A.
,
Toyserkani
,
E.
, and
Durali
,
M.
, 2007, “
Clad Height Control in Laser Solid Freeform Fabrication Using a Feedforward PID Controller
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
35
(
3–4
), pp.
280
292
.
7.
Fathi
,
A.
,
Khajepour
,
A.
,
Durali
,
M.
, and
Toyserkani
,
E.
, 2008, “
Geometry Control of the Deposited Layer in a Nonplanar Laser Cladding Process Using a Variable Structure Controller
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
3
), p.
031003
.
8.
Doumanidis
,
C.
, and
Kwak
,
Y. -M.
, 2001, “
Geometry Modeling and Control by Infrared and Laser Sensing in Thermal Manufacturing With Material Deposition
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
45
52
.
9.
Han
,
L.
,
Liou
,
F. W.
, and
Musti
,
S.
, 2005, “
Thermal Behavior and Geometry Model of Melt Pool in Laser Material Process
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1005
1014
.
10.
Bennon
,
W.
, and
Incropera
,
F.
, 1987, “
A Continuum Model for Momentum, Heat, and Species Transport in Binary Solid-Liquid Phase Change Systems I
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
2171
2187
.
11.
Bennon
,
W.
, and
Incropera
,
F.
, 1987, “
A Continuum Model for Momentum, Heat, and Species Transport in Binary Solid-Liquid Phase Change Systems II
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
2161
2170
.
12.
Tang
,
L.
,
Ruan
,
Z.
,
Landers
,
R. G.
, and
Liou
,
F. W.
, 2008, “
Variable Powder Flow Rate Control in Laser Metal Deposition Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
4
), p.
041016
.
13.
Kennedy
,
J.
, and
Eberhart
,
R. C.
, 1995, “
Particle Swarm Optimization
,”
IEEE International Conference on Neural Networks
, Perth, Australia, pp.
1942
1948
.
14.
Gudise
,
V. G.
, and
Venayagamoorthy
,
G. K.
, 2003, “
Comparison of Particle Swarm Optimization and Back Propagation as Training Algorithms for Neural Networks
,”
IEEE Swarm Intelligence Symposium
, pp.
110
117
.
15.
Bhattacharya
,
R.
,
Joshi
,
A.
, and
Bhattacharya
,
T. K.
, 2006, PSO-Based Evolutionary Optimization for Black-Box Modeling of Arbitrary Shaped On-Chip RF Inductors, Silicon Monolithic Integrated Circuits in RF Systems, Digest of Papers, pp.
103
106
.
16.
Hu
,
X.
,
Eberhart
,
R. C.
, and
Shi
,
Y.
, 2003, “
Engineering Optimization With Particle Swarm
,”
IEEE Swarm Intelligence Symposium
, pp.
53
57
.
17.
Arimoto
,
S.
,
Kawamura
,
S.
, and
Miyazaki
,
F.
, 1984, “
Bettering Operations of Robots by Learning
,”
J. Rob. Syst.
0741-2223,
1
, pp.
123
140
.
You do not currently have access to this content.